Find limit 1 1^\infty

Calculus Level 2

lim n ( a + b n 1 a ) n \large \displaystyle \lim_{n \to \infty} \left(\dfrac{a+\sqrt[n]{b}-1}{a}\right)^{n}

Calculate the limit above in terms of a a and b b , where a a and b b are constants with b 0 b\geq0 .

b a \sqrt[a]{b} e π e^{\pi} a b \sqrt[b]{a} e e π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Parth Lohomi
May 18, 2016

Set the limit equal to y y

Taking ln() \text{ln()} both side we have

lim n n ln ( a + b 1 / n 1 a ) = ln ( y ) \displaystyle \lim_{n \to \infty} n \ln \left(\dfrac{a+b^{1/n}-1}{a}\right) = \ln (y)

lim n ln ( a + b 1 / n 1 a ) 1 / n = ln ( y ) \displaystyle \lim_{n \to \infty}\dfrac{\ln \left(\dfrac{a+b^{1/n}-1}{a}\right)}{1/n} = \ln (y)

Which converts the limit to the 0 0 \color{#D61F06}{\dfrac{0}{0}} form,now I will be using L Hospital rule

lim n ( a a + b 1 / n 1 ) b 1 / n ln ( b ) a × n 2 ( 1 n 2 ) = ln ( y ) \displaystyle \lim_{n \to \infty} \dfrac{\left(\dfrac{a}{a+b^{1/n}-1}\right)\dfrac{-b^{1/n}\ln (b)}{a\times{n^2}}}{\left(-\dfrac{1}{n^2}\right)} = \ln (y)

On simplifying we get

lim n b 1 / n ln ( b ) a + b 1 / n 1 = ln ( b ) a = ln b 1 / a = ln ( y ) \displaystyle \lim_{n \to \infty} \dfrac{b^{1/n} \ln (b)}{a+b^{1/n}-1}=\dfrac{\ln (b)}{a}=\ln b^{1/a}=\ln (y)

So y = e ln ( b 1 / a ) = b a y=e^{\ln (b^{1/a})}=\color{#3D99F6}{\boxed{\sqrt[a] b}}


I have used the tool that differentiation of b 1 / n b^{1/n} is b 1 / n ln ( b ) n 2 \dfrac{-b^{1/n}\ln (b)}{n^2}

METHOD 2 \color{#D61F06}{\text{METHOD 2}}

Assume b = 0 b=0 then limit must equal to 0 0 as α = 0 \alpha^{\infty}=0 when α [ 0 , 1 ) \alpha \in [0,1)

and only one option gives 0 when we put b=0 that is our answer.

Dpp -18 Qno 10.

Shubhendra Singh - 5 years ago

Log in to reply

Daily practice problem?

Ashish Menon - 5 years ago

The restrictions on the constants are insufficient. (Possibly the author meant b>0.)

Peter Byers - 4 years, 8 months ago
Rushikesh Jogdand
May 18, 2016

Let, y = lim n ( a + b n 1 a ) n y=\lim_{n \to \infty} \left(\dfrac{a+\sqrt[n]{b}-1}{a}\right)^{n} taking ln \ln_{}{} of both sides, ln y = lim n n × ln ( a + b n 1 a ) \ln{y}=\lim_{n \to \infty}{n\times \ln{\left(\frac{a+\sqrt[n]{b}-1}{a}\right)}} Substitute t = 1 n t=\frac{1}{n} ln y = lim t 0 ( ln a + b t 1 a ) t \ln{y}=\lim_{t \to 0}{\frac{\left(\ln{\frac{a+b^{t}-1}{a}}\right)}{t}} Since, this limit is in 0 0 \frac{0}{0} form, we may use L'Hôpital's rule ln y = lim t 0 a a + b t 1 × ln b × b t a 1 = ln b a \large \ln{y}=\lim_{t \to 0}\frac{\frac{a}{a+b^{t}-1}\times \frac{\ln{b}\times b^{t}}{a}}{1}=\frac{\ln{b}}{a} y = b a \Rightarrow y=\sqrt[a]{b}

oops seems someone already posted the solution. L A T E X L_A T_E X :(

Rushikesh Jogdand - 5 years ago

That's how I did it too.

Peter Byers - 4 years, 8 months ago

You can use expansion of b 1 / n b^{1/n}

b 1 / n b^{1/n} = 1 + l n ( b ) n 1+\frac{ln(b)}{n} and then binomial expansion

As this is a multiple choice question, it is easy to see that for a=1 only one choice remains ;-)

J T - 2 years ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...