Find m-n

Geometry Level 5

In triangle A B C ABC , A C = 13 AC = 13 , B C = 14 BC = 14 , and A B = 15 AB=15 . Points M M and D D lie on A C AC with A M = M C AM=MC and A B D = D B C \angle ABD = \angle DBC . Points N N and E E lie on A B AB with A N = N B AN=NB and A C E = E C B \angle ACE = \angle ECB . Let P P be the point, other than A A , of intersection of the circumcircles of A M N \triangle AMN and A D E \triangle ADE . Ray A P AP meets B C BC at Q Q . The ratio B Q C Q \frac{BQ}{CQ} can be written in the form m n \frac{m}{n} , where m m and n n are relatively prime positive integers. Find m n m-n .


The answer is 218.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Johanz Piedad
Sep 17, 2015

Let Y = M N A Q Y = MN \cap AQ . B Q Q C = N Y M Y \frac {BQ}{QC} = \frac {NY}{MY} since A M N A C B \triangle AMN \sim \triangle ACB . Since quadrilateral A M P N AMPN is cyclic, M Y A P Y N \triangle MYA \sim \triangle PYN and M Y P A Y N \triangle MYP \sim \triangle AYN , yielding Y M Y A = M P A N \frac {YM}{YA} = \frac {MP}{AN} and Y A Y N = A M P N \frac {YA}{YN} = \frac {AM}{PN} . Multiplying these together yields Y N Y M = ( A N A M ) ( P N P M ) \frac {YN}{YM} = \left(\frac {AN}{AM}\right) \left(\frac {PN}{PM}\right) .

A N A M = A B 2 A C 2 = 15 13 \frac {AN}{AM} = \frac {\frac {AB}{2}}{\frac {AC}{2}} = \frac {15}{13} . Also, P P is the center of spiral similarity of segments M D MD and N E NE , so P M D P N E \triangle PMD \sim \triangle PNE . Therefore, P N P M = N E M D \frac {PN}{PM} = \frac {NE}{MD} , which can easily be computed by the angle bisector theorem to be 145 117 \frac {145}{117} . It follows that B Q C Q = 15 13 145 117 = 725 507 \frac {BQ}{CQ} = \frac {15}{13} \cdot \frac {145}{117} = \frac {725}{507} , giving us an answer of 725 507 = 218 725 - 507 = \boxed{218} .

Alan Yan
Sep 23, 2015

After I did this problem using the Synthetic Solution, I decided to try a bash lol. Since the synthetic way is already posted, I'll post the bash.

We will use barycentric coordinates. We know that a = 14 , b = 13 , c = 15 a = 14 , b = 13 , c = 15 . A = ( 1 , 0 , 0 ) A = (1, 0, 0) N = ( 1 : 1 : 0 ) N = (1 : 1: 0) M = ( 1 : 0 : 1 ) M = (1: 0 : 1) E = ( a : b : 0 ) E = (a:b : 0) D = ( a : 0 : c ) D = (a:0:c) Using this information, you can find the equations of the circles.

You know that circle A M N AMN is a 2 y z b 2 x z c 2 x y + ( x + y + z ) ( c 2 2 y + b 2 2 z ) = 0 - a^2yz - b^2xz - c^2xy + (x+y+z)(\frac{c^2}{2}y + \frac{b^2}{2}z) = 0 You know that circle A D E ADE is a 2 y z b 2 x z c 2 x y + ( x + y + z ) ( a c 2 a + b y + a b 2 a + c z ) = 0 - a^2yz - b^2xz - c^2xy + (x+y+z)(\frac{ac^2}{a+b}y + \frac{ab^2}{a+c}z) = 0

We can solve set both of these equations equal to each other to find the intersection. After simplification, you get 1 5 2 27 y = 1 3 2 29 z \frac{15^2}{27}y = \frac{13^2}{29} z which implies that P = ( x 0 : 27 1 5 2 : 29 1 3 2 ) P = (x_0 : \frac{27}{15^2} : \frac{29}{13^2}) .

Line A P AP has an equation in the form y = k z y = kz . Plugging in the values for P P , we find that the equation of line A P AP is y = 27 1 3 2 29 1 5 2 z y = \frac{27 \cdot 13^2}{29 \cdot 15^2} z

Since Q Q lies on line B C BC , we know that Q = ( 0 : 27 1 3 2 : 29 1 5 2 ) = ( 0 , 27 1 3 2 27 1 3 2 + 1 5 2 29 , 29 1 5 2 27 1 3 2 + 1 5 2 29 ) Q = (0 : 27 \cdot 13^2 : 29 \cdot 15^2 ) = (0 , \frac{27 \cdot 13^2}{27 \cdot 13^2 + 15^2 \cdot 29} , \frac{29 \cdot 15^2}{27 \cdot 13^2 + 15^2 \cdot 29})

It is known that given the displacement vector P Q PQ , P Q 2 = a 2 y z b 2 x z c 2 x y |PQ|^2 = -a^2yz - b^2xz - c^2xy

We know that B Q = ( 0 , 29 1 5 2 27 1 3 2 + 1 5 2 29 , 29 1 5 2 27 1 3 2 + 1 5 2 29 ) BQ = (0 , \frac{29 \cdot 15^2}{27 \cdot 13^2 + 15^2 \cdot 29} , - \frac{29 \cdot 15^2}{27 \cdot 13^2 + 15^2 \cdot 29} ) , the x = 0 x = 0 immediately kills a bunch of terms, which implies B Q 2 = 1 4 2 ( 1 5 2 29 27 1 3 2 + 1 5 2 29 ) 2 |BQ|^2 = 14^2 \cdot (\frac{15^2 \cdot 29}{27 \cdot 13^2 + 15^2 \cdot 29})^2

Similarly, C Q 2 = 1 4 2 ( 27 1 3 2 27 1 3 2 + 1 5 2 29 ) 2 |CQ|^2 = 14^2(\frac{27 \cdot 13^2}{27 \cdot 13^2 + 15^2 \cdot 29})^2 ( B Q C Q ) 2 = ( 1 5 2 29 27 1 3 2 + 1 5 2 29 27 1 3 2 + 1 5 2 29 27 1 3 2 ) 2 (\frac{BQ}{CQ})^2 = (\frac{15^2 \cdot 29}{27 \cdot 13^2 + 15^2 \cdot 29} \cdot \frac{27 \cdot 13^2 + 15^2 \cdot 29}{27 \cdot 13^2})^2 = ( 725 507 ) 2 B Q C Q = 725 507 m n = 218 = (\frac{725}{507})^2 \implies \frac{BQ}{CQ} = \frac{725}{507} \implies m - n = \boxed{218}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...