Find min(P).

Algebra Level 5

( x , y ) (x,y) is a real solution of the following system of equations:

{ x + y = 2 a 1 x 2 + y 2 = a 2 + 2 a 3 \begin{cases} x+y=2a-1 \\ { x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }+2a-3 \end{cases}

where a a is a real number.

Find the minimum value of P = x y P=xy . Round your answer to three decimal places.


The answer is 0.628679.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Here is a common incorrect solution that solvers should avoid:

{ x + y = 2 a 1 x 2 + y 2 = a 2 + 2 a 3 ( x + y ) 2 ( x 2 + y 2 ) = ( 2 a 1 ) 2 ( a 2 + 2 a 3 ) 2 x y = ( 4 a 2 4 a + 1 ) ( a 2 + 2 a 3 ) 2 P = 3 a 2 6 a + 4 2 P = 3 ( a 1 ) 2 + 1 1 P 0.5 \begin{cases} x+y=2a-1 \\ { x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }+2a-3 \end{cases}\\ \Rightarrow (x+y)^{ 2 }-({ x }^{ 2 }+{ y }^{ 2 })={ (2a-1) }^{ 2 }-({ a }^{ 2 }+2a-3)\\ \Leftrightarrow 2xy=(4{ a }^{ 2 }-4a+1)-({ a }^{ 2 }+2a-3)\\ \Leftrightarrow 2P=3{ a }^{ 2 }-6a+4\\ \Leftrightarrow 2P=3(a-1)^{ 2 }+1\ge 1\\ \Rightarrow P\ge 0.5

However, P = 0.5 P=0.5 occurs when ( a 1 ) 2 = 0 a = 1 { (a-1) }^{ 2 }=0\Leftrightarrow a=1 . In this case, { x + y = 1 x 2 + y 2 = 0 \begin{cases} x+y=1 \\ { x }^{ 2 }+{ y }^{ 2 }=0 \end{cases} , which is impossible.

Here is the correct solution :

As proven in the solution above, 2 P = 3 a 2 6 a + 4 4 P = 6 a 2 12 a + 8 2P=3{ a }^{ 2 }-6a+4\\ \Rightarrow 4P=6{ a }^{ 2 }-12a+8

Suppose S = x + y S=x+y . The given system of equations has at least a solution when S 2 4 P 0 S^{ 2 }-4P\ge 0 (According to the inverse of Vieta Formula)

( 2 a 1 ) 2 ( 6 a 2 12 a + 8 ) 0 2 a 2 + 8 a 7 0 2 ( a 2 4 a + 4 ) 1 ( a 2 ) 2 1 2 2 2 a 2 2 2 2 2 2 a 1 2 + 2 2 3 × ( 2 2 2 ) 2 + 1 3 ( a 1 ) 2 + 1 P 11 6 2 4 \Leftrightarrow (2a-1)^{ 2 }-(6{ a }^{ 2 }-12a+8)\ge 0\\ \Leftrightarrow -2{ a }^{ 2 }+8a-7\ge 0\\ \Leftrightarrow -2({ a }^{ 2 }-4a+4)\ge -1\\ \Leftrightarrow { (a-2) }^{ 2 }\le \frac { 1 }{ 2 } \\ \Leftrightarrow -\frac { \sqrt { 2 } }{ 2 } \le a-2\le \frac { \sqrt { 2 } }{ 2 } \\ \Leftrightarrow \frac { 2-\sqrt { 2 } }{ 2 } \le a-1\le \frac { 2+\sqrt { 2 } }{ 2 } \\ \Rightarrow 3\times (\frac { 2-\sqrt { 2 } }{ 2 } )^{ 2 }+1\le 3{ (a-1) }^{ 2 }+1\\ \Rightarrow P\ge \frac { 11-6\sqrt { 2 } }{ 4 } \\

Hence, the solution is 11 6 2 4 \frac { 11-6\sqrt { 2 } }{ 4 }

David Vreken
Jun 21, 2019

By substitution, x 2 + ( 2 a 1 x ) 2 = a 2 + 2 a 3 x^2 + (2a - 1 - x)^2 = a^2 + 2a - 3 , which simplifies to 2 x 2 + ( 2 4 a ) x + 3 a 2 6 a + 4 = 0 2x^2 + (2 - 4a)x + 3a^2 - 6a + 4 = 0 , which solves to x = 2 a 1 ± 2 a 2 + 8 a 7 2 x = \frac{2a - 1 \pm \sqrt{-2a^2 + 8a - 7}}{2} . Therefore, x x has real solutions when 2 a 2 + 8 a 7 > 0 -2a^2 + 8a - 7 > 0 , or when 4 2 2 a 4 2 2 \frac{4 - \sqrt{2}}{2} \leq a \leq \frac{4 - \sqrt{2}}{2} .

Now P = x y = 1 2 ( ( x + y ) 2 ( x 2 + y 2 ) ) P = xy = \frac{1}{2}((x + y)^2 - (x^2 + y^2)) which by substitution is P = 1 2 ( ( 2 a 1 ) 2 ( a 2 + 2 a 3 ) ) P = \frac{1}{2}((2a - 1)^2 - (a^2 + 2a - 3)) or P = 3 2 ( a 1 ) 2 + 1 2 P = \frac{3}{2}(a - 1)^2 + \frac{1}{2} , which is increasing for 4 2 2 a 4 2 2 \frac{4 - \sqrt{2}}{2} \leq a \leq \frac{4 - \sqrt{2}}{2} . Therefore, the minimum value of P P is when a = 4 2 2 a = \frac{4 - \sqrt{2}}{2} at P = 3 2 ( 4 2 2 1 ) 2 + 1 2 = 11 6 2 4 0.629 P = \frac{3}{2}(\frac{4 - \sqrt{2}}{2} - 1)^2 + \frac{1}{2} = \frac{11 - 6\sqrt{2}}{4} \approx \boxed{0.629} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...