( x , y ) is a real solution of the following system of equations:
{ x + y = 2 a − 1 x 2 + y 2 = a 2 + 2 a − 3
where a is a real number.
Find the minimum value of P = x y . Round your answer to three decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By substitution, x 2 + ( 2 a − 1 − x ) 2 = a 2 + 2 a − 3 , which simplifies to 2 x 2 + ( 2 − 4 a ) x + 3 a 2 − 6 a + 4 = 0 , which solves to x = 2 2 a − 1 ± − 2 a 2 + 8 a − 7 . Therefore, x has real solutions when − 2 a 2 + 8 a − 7 > 0 , or when 2 4 − 2 ≤ a ≤ 2 4 − 2 .
Now P = x y = 2 1 ( ( x + y ) 2 − ( x 2 + y 2 ) ) which by substitution is P = 2 1 ( ( 2 a − 1 ) 2 − ( a 2 + 2 a − 3 ) ) or P = 2 3 ( a − 1 ) 2 + 2 1 , which is increasing for 2 4 − 2 ≤ a ≤ 2 4 − 2 . Therefore, the minimum value of P is when a = 2 4 − 2 at P = 2 3 ( 2 4 − 2 − 1 ) 2 + 2 1 = 4 1 1 − 6 2 ≈ 0 . 6 2 9 .
Problem Loading...
Note Loading...
Set Loading...
Here is a common incorrect solution that solvers should avoid:
{ x + y = 2 a − 1 x 2 + y 2 = a 2 + 2 a − 3 ⇒ ( x + y ) 2 − ( x 2 + y 2 ) = ( 2 a − 1 ) 2 − ( a 2 + 2 a − 3 ) ⇔ 2 x y = ( 4 a 2 − 4 a + 1 ) − ( a 2 + 2 a − 3 ) ⇔ 2 P = 3 a 2 − 6 a + 4 ⇔ 2 P = 3 ( a − 1 ) 2 + 1 ≥ 1 ⇒ P ≥ 0 . 5
However, P = 0 . 5 occurs when ( a − 1 ) 2 = 0 ⇔ a = 1 . In this case, { x + y = 1 x 2 + y 2 = 0 , which is impossible.
Here is the correct solution :
As proven in the solution above, 2 P = 3 a 2 − 6 a + 4 ⇒ 4 P = 6 a 2 − 1 2 a + 8
Suppose S = x + y . The given system of equations has at least a solution when S 2 − 4 P ≥ 0 (According to the inverse of Vieta Formula)
⇔ ( 2 a − 1 ) 2 − ( 6 a 2 − 1 2 a + 8 ) ≥ 0 ⇔ − 2 a 2 + 8 a − 7 ≥ 0 ⇔ − 2 ( a 2 − 4 a + 4 ) ≥ − 1 ⇔ ( a − 2 ) 2 ≤ 2 1 ⇔ − 2 2 ≤ a − 2 ≤ 2 2 ⇔ 2 2 − 2 ≤ a − 1 ≤ 2 2 + 2 ⇒ 3 × ( 2 2 − 2 ) 2 + 1 ≤ 3 ( a − 1 ) 2 + 1 ⇒ P ≥ 4 1 1 − 6 2
Hence, the solution is 4 1 1 − 6 2