A Problem by Aly Ahmed

Geometry Level 2

log cos x tan x + log sin x cot x = 0 \large \log_{\cos x} \tan x + \log_{\sin x} \cot x = 0

Find x x in degrees for 0 < x < 9 0 0^\circ < x < 90^\circ .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shifting the second term to RHS we get

log cos x tan x = log sin x cot x \text{log}_{\text{cos }x} \text{tan }x = -\text{log}_{\text{sin }x} \text{cot }x

log cos x tan x = log sin x tan x \Rightarrow\text{log}_{\text{cos }x} \text{tan }x = \text{log}_{\text{sin }x} \text{tan }x

log tan x log cos x = log tan x log sin x \Rightarrow\Large\frac{\text{log} \text{ tan }x}{\text{log} \text{ cos }x} = \frac{\text{log} \text{ tan }x}{\text{log} \text{ sin }x}

log cos x = log sin x \Rightarrow \text{log} \text{ cos }x = \text{log} \text{ sin }x

log cos x log sin x = 0 \Rightarrow \text{log cos }x - \text{log sin }x = 0

log cos x sin x = 0 \Rightarrow \text{log }\frac{\text{cos }x}{\text{sin }x} = 0

cos x sin x \Rightarrow \Large\frac{\text{cos }x}{\text{sin }x} = cot x = 1 = \text{cot }x = 1

x = 45 ° \Rightarrow x = 45\degree

Chew-Seong Cheong
Apr 12, 2020

log cos x tan x + log sin x cot x = 0 log tan x log cos x + log cot x log sin x = 0 log sin x log cos x log cos x + log cos x sin x log sin x = 0 log sin x log cos x 1 + log cos x log sin x 1 = 0 ( log sin x log cos x ) 2 2 ( log sin x log cos x ) + 1 = 0 ( log sin x log cos x 1 ) 2 = 0 log sin x log cos x = 1 log sin x = log cos x sin x = cos x x = 45 for x ( 0 , 9 0 ) \begin{aligned} \log_{\cos x} \tan x + \log_{\sin x}\cot x & = 0 \\ \frac {\log \tan x}{\log \cos x} + \frac {\log \cot x}{\log \sin x} & = 0 \\ \frac {\log \sin x - \log \cos x}{\log \cos x} + \frac {\log \cos x - \sin x}{\log \sin x} & = 0 \\ \frac {\log \sin x}{\log \cos x} - 1 + \frac {\log \cos x}{\log \sin x} - 1 & = 0 \\ \left(\frac {\log \sin x}{\log \cos x}\right)^2 - 2 \left(\frac {\log \sin x}{\log \cos x}\right) + 1 & = 0 \\ \left(\frac {\log \sin x}{\log \cos x} - 1 \right)^2 & = 0 \\ \implies \frac {\log \sin x}{\log \cos x} & = 1 \\ \log \sin x & = \log \cos x \\ \sin x & = \cos x \\ \implies x & = \boxed{45}^\circ & \small \blue{\text{for }x \in (0^\circ, 90^\circ)} \end{aligned}

Vin Benzin
Apr 12, 2020

log cos ( x ) ( tan ( x ) ) + log sin ( x ) ( tan ( x ) 1 ) = 0 log cos ( x ) ( tan ( x ) ) = log sin ( x ) ( tan ( x ) 1 ) log cos ( x ) ( tan ( x ) ) = log sin ( x ) ( tan ( x ) ) x = π 2 45 ° sin ( x ) = cos ( x ) Not sure if I used the equivalent symbol correctly. \log_{\cos(x)}(\tan(x))+\log_{\sin(x)}(\tan(x)^{-1})=0 \\ \log_{\cos(x)}(\tan(x))=-\log_{\sin(x)}(\tan(x)^{-1}) \\ \log_{\cos(x)}(\tan(x))=\log_{\sin(x)}(\tan(x)) \\ x=\frac{\pi}{2}\equiv 45\degree \Rightarrow \sin(x)=\cos(x) \\ \text{Not sure if I used the equivalent symbol correctly.}

An unfortunate mathematical notation. tan 1 ( x ) \tan^{-1}(x) is denoted as the inverse tangent of x x , or arctan ( x ) \arctan(x) .

Elijah L - 1 year, 2 months ago

Log in to reply

I'm guessing it's alright now. Thank you for pointing out.

Vin Benzin - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...