lo g cos x tan x + lo g sin x cot x = 0
Find x in degrees for 0 ∘ < x < 9 0 ∘ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
lo g cos x tan x + lo g sin x cot x lo g cos x lo g tan x + lo g sin x lo g cot x lo g cos x lo g sin x − lo g cos x + lo g sin x lo g cos x − sin x lo g cos x lo g sin x − 1 + lo g sin x lo g cos x − 1 ( lo g cos x lo g sin x ) 2 − 2 ( lo g cos x lo g sin x ) + 1 ( lo g cos x lo g sin x − 1 ) 2 ⟹ lo g cos x lo g sin x lo g sin x sin x ⟹ x = 0 = 0 = 0 = 0 = 0 = 0 = 1 = lo g cos x = cos x = 4 5 ∘ for x ∈ ( 0 ∘ , 9 0 ∘ )
lo g cos ( x ) ( tan ( x ) ) + lo g sin ( x ) ( tan ( x ) − 1 ) = 0 lo g cos ( x ) ( tan ( x ) ) = − lo g sin ( x ) ( tan ( x ) − 1 ) lo g cos ( x ) ( tan ( x ) ) = lo g sin ( x ) ( tan ( x ) ) x = 2 π ≡ 4 5 ° ⇒ sin ( x ) = cos ( x ) Not sure if I used the equivalent symbol correctly.
An unfortunate mathematical notation. tan − 1 ( x ) is denoted as the inverse tangent of x , or arctan ( x ) .
Log in to reply
I'm guessing it's alright now. Thank you for pointing out.
Problem Loading...
Note Loading...
Set Loading...
Shifting the second term to RHS we get
log cos x tan x = − log sin x cot x
⇒ log cos x tan x = log sin x tan x
⇒ log cos x log tan x = log sin x log tan x
⇒ log cos x = log sin x
⇒ log cos x − log sin x = 0
⇒ log sin x cos x = 0
⇒ sin x cos x = cot x = 1
⇒ x = 4 5 °