Find out the value:

Geometry Level 2

If A + B = 4 5 A+B= 45^\circ , then ( 1 + tan B ) ( 1 + tan A ) = ? (1+\tan B)(1+\tan A)=?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shòvon Saha
Aug 12, 2017

•(1+tan B)(1+tan A)=1+ (tan A+ tan B+ tan A. tan B) • tan (B+ A)= (tan A+ tan B)/(1-tan A. tan B) = tan A+ tan B+ tan A. tan B =tan 45°(given) = 1. so, 1+1= 2

Chew-Seong Cheong
Aug 13, 2017

If A + B = 4 5 A+B = 45^\circ , then we have:

tan ( A + B ) = tan 4 5 tan A + tan B 1 tan A tan B = 1 tan A + tan B = 1 tan A tan B \begin{aligned} \tan (A+B) & = \tan 45^\circ \\ \frac {\tan A + \tan B}{1 - \tan A \tan B} & = 1 \\ \implies \tan A + \tan B & = 1 - \tan A\tan B \end{aligned}

Now, we have:

( 1 + tan A ) ( 1 + tan B ) = 1 + tan A + tan B + tan A tan B Note that tan A + tan B = 1 tan A tan B = 1 + 1 tan A tan B + tan A tan B = 2 \begin{aligned} (1+\tan A) (1+\tan B) & = 1+{\color{#3D99F6}\tan A + \tan B} + \tan A \tan B & \small \color{#3D99F6} \text{Note that }\tan A + \tan B = 1 - \tan A\tan B \\ & = 1+{\color{#3D99F6}1 - \tan A\tan B} + \tan A \tan B \\ & = \boxed{2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...