Find B C \overline{BC} in this triangle

Geometry Level 3

A circle of radius 5 5 is centered at point H ( 10 , 5 ) H(10, 5) . Tangents from point A ( 0 , 16 ) A(0, 16) are drawn to the circle as shown in the above diagram. They intersect the x x -axis at points B B and C C . Find the distance d = B C d = \overline{BC} , and enter the value of 3 d 3 d .


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Nov 23, 2020

Circle H H has an equation of ( x 10 ) 2 + ( y 5 ) 2 = 25 (x - 10)^2 + (y - 5)^2 = 25 , and using implicit differentiation on this equation with m = d y d x m = \frac{dy}{dx} we can obtain 2 ( x 10 ) + 2 ( y 5 ) m = 0 2(x - 10) + 2(y - 5)m = 0 . Also, a tangent point on A B AB and a tangent point on A C AC to this circle will both fit the equation y = m x + 16 y = mx + 16 .

These three equations solve to m = 12 5 m = -\cfrac{12}{5} and m = 8 15 m = -\cfrac{8}{15} , so A B AB has an equation of y = 12 5 x + 16 y = -\cfrac{12}{5}x + 16 and A C AC has an equation of y = 8 15 x + 16 y = -\cfrac{8}{15}x + 16 .

Setting y = 0 y = 0 on both of these equations and solving gives B ( 20 3 , 0 ) B(\cfrac{20}{3}, 0) and C ( 30 , 0 ) C(30, 0) , so that d = B C = 30 20 3 = 70 3 d = BC = 30 - \cfrac{20}{3} = \cfrac{70}{3} , and 3 d = 70 3d = \boxed{70} .

Very nice solution. But could you elaborate more on how to solve the three equations, to obtain the values of the slope m m ?

Hosam Hajjir - 6 months, 2 weeks ago

Log in to reply

I did it by a series of substitutions.

Substituting y = m x + 16 y = mx + 16 into ( x 10 ) 2 + ( y 5 ) 2 = 25 (x - 10)^2 + (y - 5)^2 = 25 gives ( x 10 ) 2 + ( m x + 11 ) 2 = 25 (x - 10)^2 + (mx + 11)^2 = 25 , and into 2 ( x 10 ) + 2 ( y 5 ) m = 0 2(x - 10) + 2(y - 5)m = 0 gives 2 ( x 10 ) + 2 ( m x + 11 ) m = 0 2(x - 10) + 2(mx + 11)m = 0 .

Solving 2 ( x 10 ) + 2 ( m x + 11 ) m = 0 2(x - 10) + 2(mx + 11)m = 0 for x x gives x = 10 11 m m 2 + 1 x = \cfrac{10 - 11m}{m^2 + 1} , and substituting that into ( x 10 ) 2 + ( m x + 11 ) 2 = 25 (x - 10)^2 + (mx + 11)^2 = 25 gives ( 10 11 m m 2 + 1 10 ) 2 + ( m 10 11 m m 2 + 1 + 11 ) 2 = 25 \Bigg(\cfrac{10 - 11m}{m^2 + 1} - 10\Bigg)^2 + \Bigg(m \cdot \cfrac{10 - 11m}{m^2 + 1} + 11\Bigg)^2 = 25 .

( 10 11 m m 2 + 1 10 ) 2 + ( m 10 11 m m 2 + 1 + 11 ) 2 = 25 \Bigg(\cfrac{10 - 11m}{m^2 + 1} - 10\Bigg)^2 + \Bigg(m \cdot \cfrac{10 - 11m}{m^2 + 1} + 11\Bigg)^2 = 25

( 10 m 2 11 m m 2 + 1 ) 2 + ( 10 m 11 m 2 + 1 ) 2 = 25 \Longrightarrow \Bigg(\cfrac{-10m^2 - 11m}{m^2 + 1}\Bigg)^2 + \Bigg(\cfrac{10m - 11}{m^2 + 1}\Bigg)^2 = 25

( m 2 + 1 ) ( 10 m + 11 ) 2 ( m 2 + 1 ) 2 = 25 \Longrightarrow \cfrac{(m^2 + 1)(10m + 11)^2}{(m^2 + 1)^2} = 25

( 10 m + 11 ) 2 m 2 + 1 = 25 \Longrightarrow \cfrac{(10m + 11)^2}{m^2 + 1} = 25

100 m 2 + 220 m + 121 = 25 m 2 + 25 \Longrightarrow 100m^2 + 220m + 121 = 25m^2 + 25

75 m 2 + 220 m + 96 = 0 \Longrightarrow 75m^2 + 220m + 96 = 0

( 5 m + 12 ) ( 15 m + 8 ) = 0 \Longrightarrow (5m + 12)(15m + 8) = 0

so m = 12 5 m = -\cfrac{12}{5} and m = 8 15 m = -\cfrac{8}{15} .

David Vreken - 6 months, 2 weeks ago

Log in to reply

Thank you for a very clear presentation of the solution method.

Hosam Hajjir - 6 months, 2 weeks ago
Toby M
Dec 6, 2020

Let the tangent AB intersect the circle at point P, tangent BC intersect at Q, and tangent AC intersect at R. Furthermore, let the origin be O. Before reading on, draw a diagram with these labelled points first!

Firstly, find AP. A H 2 = ( 0 10 ) 2 + ( 16 5 ) 2 = 221 AH^2 = (0 - 10)^2 + (16 - 5)^2 = 221 , and P H 2 = 5 2 = 25 PH^2 = 5^2 = 25 (radius), hence A P = A H 2 P H 2 = 221 25 = 14 AP = \sqrt{AH^2 - PH^2} = \sqrt{221-25} = 14 .

Since tangents from the same point have the same length, BP = BQ = x, so OB = OQ - BQ = 10 - x, and AB = AP + PB = 14 + x. Thus by Pythagoras, 1 6 2 + ( 10 x ) 2 = ( 14 + x ) 2 256 + 100 20 x + x 2 = 196 + 28 x + x 2 x = 10 3 16^2 + (10 - x)^2 = (14+x)^2 \Rightarrow 256 + 100 - 20x + x^2 = 196 + 28x + x^2 \Rightarrow x = \frac{10}{3} .

Then using the property again, RC = QC = a, so OC = OQ + QC = 10 + a, and AC = AR + RC = 14 + a (AP = AR). Therefore 16 + ( 10 + a ) 2 = ( 14 + a ) 2 256 + 100 + 20 a + a 2 = 196 + 28 a + a 2 a = 20 16 + (10 +a)^2 = (14 + a)^2 \Rightarrow 256 + 100 + 20a + a^2 = 196 + 28a + a^2 \Rightarrow a = 20 .

Thus BC = BQ + QC = x + a, so 3 B C = 3 ( 20 + 10 3 ) = 70 3 BC = 3 \left(20 + \frac{10}{3} \right) = \boxed{70} .

Chew-Seong Cheong
Nov 24, 2020

Let the origin be O ( 0 , 0 ) O(0,0) , C A H = B A H = α \angle CAH =\angle BAH = \alpha and O A H = β \angle OAH = \beta . Then sin α = H D A H = 5 ( 10 0 ) 2 + ( 5 16 ) 2 = 5 221 tan α = 5 14 \sin \alpha = \dfrac {HD}{AH} = \dfrac 5{\sqrt{(10-0)^2+(5-16)^2}} = \dfrac 5{\sqrt{221}} \implies \tan \alpha = \dfrac 5{14} . And tan β = 10 16 5 = 10 11 \tan \beta = \dfrac {10}{16-5} = \dfrac {10}{11} . Then we have:

O C = A O tan C A O = 16 tan ( β + α ) = 16 10 11 + 5 14 1 10 11 5 14 = 30 O B = A O tan B A O = 16 tan ( β α ) = 16 10 11 5 14 1 + 10 11 5 14 = 20 3 d = O C O B = 70 3 3 d = 70 \begin{aligned} OC & = AO \cdot \tan \angle CAO = 16 \cdot \tan (\beta+\alpha) = 16 \cdot \frac {\frac {10}{11}+\frac 5{14}}{1-\frac {10}{11}\frac 5{14}} = 30 \\ OB & = AO \cdot \tan \angle BAO = 16 \cdot \tan (\beta-\alpha) = 16 \cdot \frac {\frac {10}{11}-\frac 5{14}}{1+\frac {10}{11}\frac 5{14}} = \frac {20}3 \\ d & = OC - OB = \frac {70}3 \\ \implies 3d & = \boxed{70} \end{aligned}

A brilliant geometric solution. Thanks for sharing.

Hosam Hajjir - 6 months, 2 weeks ago

Log in to reply

You are welcome

Chew-Seong Cheong - 6 months, 2 weeks ago
Hosam Hajjir
Nov 23, 2020

First, we'll find the distance A H \overline{AH}

A H = 1 0 2 + 1 1 2 = 221 \overline{AH} = \sqrt{ 10^2 + 11^2 } = \sqrt{ 221 }

Then the two tangents A B AB and A C AC are separated by an angle 2 θ 2 \theta , where

θ = sin 1 ( 5 221 ) \theta = \sin^{-1} ( \dfrac{5} { \sqrt{221} })

from which, cos θ = 1 25 221 = 196 221 \cos \theta = \sqrt{ 1 - \dfrac{25}{221} } = \dfrac{\sqrt{ 196 } }{ \sqrt{221}}

Here is the key to this problem. The vector extending from point A A to a point on either of the two tangents makes an angle θ \theta with the vector A H \vec{AH} . Let r = ( x , y ) \vec{r} = (x, y) be any point on either of the two tangents, then the above statement implies that,

( r A ) A H A H = cos θ r A ( \vec{r} - \vec{A} ) \cdot \dfrac{ \vec{AH} } { | \vec{A H} |} = \cos \theta | \vec{r} - \vec{A} |

Now, the vector A H = ( 10 , 11 ) = [ 10 , 11 ] T \vec{AH} = (10, -11) = [10 , -11 ]^T , so in matrix notation, the above dot product is written as,

( r A ) T [ 10 11 ] = 196 r A ( \mathbf{r} - \mathbf{A} )^T \begin{bmatrix} 10 \\ -11 \end{bmatrix} = \sqrt{196} | \mathbf{r} - \mathbf{A} |

Squaring,

( r A ) T [ 100 110 110 121 ] ( r A ) = 196 ( r A ) T ( r A ) (\mathbf{r} - \mathbf{A})^T \begin{bmatrix} 100 && -110 \\ -110 && 121 \end{bmatrix} (\mathbf{r} - \mathbf{A} ) = 196 (\mathbf{r} - \mathbf{A} )^T(\mathbf{r} - \mathbf{A} )

subtracting the right hand side from the left hand side, we obtain,

( r A ) T [ 96 110 110 75 ] ( r A ) = 0 (\mathbf{r} - \mathbf{A})^T \begin{bmatrix} -96 && -110 \\ -110 && -75 \end{bmatrix} (\mathbf{r} - \mathbf{A} ) = 0

this is the equation of the two tangents.

Plugging in y = 0 y = 0 yields the x-coordinates of points B B and C C :

[ x , 16 ] T [ 96 110 110 75 ] [ x 16 ] = 0 [x, -16]^T \begin{bmatrix} -96 && -110 \\ -110 && -75 \end{bmatrix} \begin{bmatrix} x \\ -16 \end{bmatrix} = 0

Expanding this quadratic form, we obtain,

96 x 2 220 ( 16 ) ( x ) 75 ( 16 ) 2 = 0 -96 x^2 - 220 (-16)(x) - 75 (-16)^2 = 0

which simplifies to,

3 x 2 110 x + 600 = 0 3 x^2 - 110 x + 600 = 0

and this factors to,

( 3 x 20 ) ( x 30 ) = 0 (3 x - 20 ) ( x - 30 ) = 0

Hence, B = ( 20 3 , 0 ) B = (\dfrac{20}{3}, 0 ) and C = ( 30 , 0 ) C = (30 , 0 )

and d = B C = 30 20 3 = 70 3 d = \overline{BC} = 30 - \dfrac{20}{3} = \dfrac{70}{3}

Hence, 3 d = 70 3 d = \boxed{70}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...