Find C D \overline{CD} in this diagram

Geometry Level 3

A B C \triangle ABC is right at A A , with A B = 4 , A C = 3 , B C = 5 \overline{AB} = 4 , \overline{AC} = 3 , \overline{BC} = 5 . If A C AC is extended to point D D such that the incircles of B C D \triangle BCD and A B C \triangle ABC have the same radius, then find C D \overline{CD}

Related Problem


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Hosam Hajjir
Dec 17, 2020

The inradius of A B C \triangle ABC is r = 2 A P = ( 3 ) ( 4 ) 3 + 4 + 5 = 1 r = \dfrac{2A}{P} = \dfrac{(3)(4)}{3 + 4 + 5} = 1 . Let x = C D x = \overline{CD} , then using the same formula,

1 = 2 A P = ( x ) ( 4 ) 5 + x + 4 2 + ( 3 + x ) 2 1 = \dfrac{2A}{P} = \dfrac{(x)(4) } {5 + x + \sqrt{4^2 + (3 + x)^2} }

Hence,

4 x = 5 + x + x 2 + 6 x + 25 4 x= 5 + x + \sqrt{x^2 + 6 x + 25 }

from which,

x 2 + 6 x + 25 = 3 x 5 \sqrt{x^2 + 6 x + 25 } = 3 x - 5

This equation solves easily to x = 9 2 = 4.5 x = \dfrac{9}{2} = \boxed{4.5}

Sathvik Acharya
Dec 17, 2020

Let the radius of the incircles be r r . From the relation [ A B C ] = r s 1 [\triangle ABC]=r\cdot s_1 , we have, r = 2 1 A B + B C + C A = 12 12 = 1 r=\frac{2\triangle_1}{AB+BC+CA}=\frac{12}{12}=1 Similarly, the inradius of B C D \triangle BCD is also r r . Let the length of side C D = x CD=x be x x and B D = y BD=y . Then, r = [ B C D ] s 2 = 2 2 C B + B D + D C r=\frac{[\triangle BCD]}{s_2}=\frac{2\triangle_2}{CB+BD+DC} 1 = 4 x 5 + x + y 1=\frac{4x}{5+x+y} y = 3 x 5 ( 1 ) \implies y=3x-5 \; \; \; \; \; \; \; (1) Also, note that A B D \triangle ABD is right angled at A A . By the Pythagorean theorem, A B 2 + A D 2 = B D 2 AB^2+AD^2=BD^2 4 2 + ( 3 + x ) 2 = y 2 25 + 6 x + x 2 = y 2 ( 2 ) 4^2+(3+x)^2=y^2 \implies 25+6x+x^2=y^2 \; \; \; \; \; \; \; (2) Combing equations ( 1 ) (1) and ( 2 ) (2) , 25 + 6 x + x 2 = ( 3 x 5 ) 2 = 9 x 2 30 x + 25 25+6x+x^2=(3x-5)^2=9x^2-30x+25 8 x 2 = 36 x x = 9 2 \implies 8x^2=36x\implies x=\frac{9}{2} Therefore, the desired length of C D = 4.5 \boxed{CD=4.5}

Check this for a similar problem, but much more challenging.

Sathvik Acharya - 5 months, 3 weeks ago
Chew-Seong Cheong
Dec 17, 2020

Let the radius of the incircles be r r . Then the area of A B C \triangle ABC , [ A B C ] = 3 + 4 + 5 2 r = 3 × 4 2 6 r = 6 r = 1 [ABC] = \dfrac {3+4+5}2r = \dfrac {3 \times 4}2 \implies 6r = 6 \implies r = 1 .

Let C D = x CD=x and B D = y BD=y . By Pythagorean theorem , y = ( x + 3 ) 2 + 4 2 = x 2 + 6 x + 25 y = \sqrt{(x+3)^2 + 4^2} = \sqrt{x^2+6x+25} . And the area of A B D \triangle ABD :

[ A B D ] = [ A B C ] + [ B C D ] 4 ( x + 3 ) 2 = 4 × 3 2 + 5 + x + y 2 r 2 x + 6 = 6 + 5 + x + y 2 4 x = 5 + x + y 3 x 5 = y = x 2 + 6 x + 25 Squaring both sides 9 x 2 30 x + 25 = x 2 + 6 x + 25 8 x 2 36 x = 0 x ( 2 x 9 ) = 0 Since x > 0 x = 9 2 = 4.5 \begin{aligned} [ABD] & = [ABC]+[BCD] \\ \frac {4(x+3)}2 & = \frac {4\times 3}2 + \frac {5+x+y}2 r \\ 2x + 6 & = 6 + \frac {5+x+y}2 \\ 4x & = 5 + x + y \\ 3x - 5 & = y = \sqrt{x^2+6x+25} & \small \blue{\text{Squaring both sides}} \\ 9x^2 - 30x + 25 & = x^2 + 6x + 25 \\ 8x^2 - 36x & = 0 \\ x(2x - 9) & = 0 & \small \blue{\text{Since }x>0} \\ \implies x & = \frac 92 = \boxed{4.5} \end{aligned}

Hongqi Wang
Dec 17, 2020

line EF intersects BC at G, extend it intersecting AB at G. And circle F tangents AD, BC and BD at P, Q, R respectively. Then:

r = 2 S C = 2 1 2 3 4 3 + 4 + 5 = 1 H E : E G = B H : B G = B A : B C = 4 : 5 E G = 5 4 , G F = E G = 5 4 A P = H F = 1 + 2 × 5 4 = 7 2 C Q = C P = A P A C = 1 2 B R = B Q = B C C Q = 9 2 A B 2 = B D 2 A D 2 = ( B D + A D ) ( B D A D ) = ( B R + D R + A P + P D ) ( B R + D R A P D P ) = ( B R + A P + 2 P D ) ( B R A P ) 4 2 = ( 9 2 + 7 2 + 2 P D ) ( 9 2 7 2 ) P D = 4 C D = C P + P D = 1 2 + 4 = 9 2 r = \dfrac {2S}{C} = \dfrac {2 \cdot \frac 12 \cdot 3 \cdot 4}{3+4+5} = 1 \\ HE : EG = BH : BG = BA : BC \\ = 4 : 5 \\ \implies EG = \dfrac 54, GF = EG = \dfrac 54 \\ AP = HF = 1 + 2 \times \dfrac 54 = \dfrac 72 \\ \implies CQ = CP = AP - AC = \dfrac 12 \\ \implies BR = BQ = BC - CQ = \dfrac 92 \\ AB^2 = BD^2 - AD^2 \\ = (BD + AD)(BD-AD) \\ = (BR+DR+AP+PD)(BR+DR-AP-DP) \\ =(BR+AP+2PD)(BR-AP) \\ 4^2 = (\dfrac 92 + \dfrac 72 + 2PD)(\dfrac 92 - \dfrac 72)\\ PD = 4 \\ \implies CD = CP + PD = \dfrac 12 + 4 = \boxed{\dfrac 92}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...