For a , b , c ∈ N and a , b < c there are n Pythagorean Triple who satisfy the equation
a + b + c = 1 0 0 0
Find the value of n and a , b , c .
Submit your answer as n + ∑ a b c = ? ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
After seeing the above solution. W e w a n t f ( a , b ) = a + b + c = 1 0 0 0 . B u t c = a 2 + b 2 , a q u a d r a t i c . A l s o f ( a , b ) = f ( b , a ) , ∴ w e o n l y h a v e t w o s o l u t i o n s , ( a , b ) a n d ( b , a ) . n = 2 . I f x , y , z a r e p r i m a r y t r i p l e s s u c h t h a t f o r a n i n t e g e r K , a + b + c = K ( x + y + z ) = K ∗ S = 1 0 0 0 . T h e n x + y + z m u s t b e e q u a l t o a f a c t o r o f 1 0 0 0 . S i n c e 1 0 0 0 = 2 3 ∗ 5 2 , n u m b e r o f f a c t o r s a r e ( 3 + 1 ) ∗ ( 3 + 1 ) − 2 = 1 4 . F a c t o r s o f 1 0 0 0 = 2 , 4 , 5 , 8 , 1 0 , 2 0 , 2 5 , 4 0 , 5 0 , 1 0 0 , 1 2 5 , 2 0 0 , 2 5 0 , 5 0 0 . S o w e s t a r t c h e c k i n g p r i m a r y t r i p l e s a n d r e j e c t t r i p l e w i t h S = a n y o f t h e f a c t o r s g i v e n a b o v e . T r i p l e ( 3 , 4 , 5 ) : − 3 + 4 + 5 = 1 2 , r e j e c t s i n c e = a n y o f t h e a b o v e f a c t o r s . T r i p l e ( 5 , 1 2 , 1 3 ) : − 5 + 1 2 + 1 3 = 3 0 , r e j e c t , s i n c e = a n y o f t h e a b o v e f a c t o r s . T r i p l e : − ( 8 , 1 5 , 1 7 ) 8 + 1 5 + 1 7 = S = 4 0 , i t m a t c h e s w i t h f a c t o r 4 0 . s o K = 1 0 0 0 / 4 0 = 2 5 . ∴ ( a , b , c ) = ( 2 5 ∗ 8 ∗ 2 5 ∗ 1 5 ∗ 2 5 , ∗ 1 7 ) = ( 2 0 0 , 3 7 5 , 4 2 5 ) . a n d ( 3 7 5 , 2 0 0 , 4 2 5 ) . S o n = 2 a n d a n s w e r = 2 + 2 ∗ 3 1 8 7 5 0 0 1 = 6 3 7 5 0 0 0 2 . . I f t h e t r i p l e ( a , b , c ) i s p r i m a r y , K = 1 .
I missed it since I did not consider both (a,b,c) and (b,a,c).
Problem Loading...
Note Loading...
Set Loading...
We require that
a + b + a 2 + b 2 = 1 0 0 0 ⟹ a 2 + b 2 = 1 0 0 0 − ( a + b ) ⟹ a 2 + b 2 = 1 0 0 0 2 + ( a + b ) 2 − 2 0 0 0 ( a + b )
⟹ a 2 + b 2 = 1 0 0 0 0 0 0 + a 2 + b 2 + 2 a b − 2 0 0 0 a − 2 0 0 0 b ⟹ a b − 1 0 0 0 a − 1 0 0 0 b = − 5 0 0 0 0 0
⟹ ( a − 1 0 0 0 ) ( b − 1 0 0 0 ) = 5 0 0 0 0 0 ⟹ ( 1 0 0 0 − a ) ( 1 0 0 0 − b ) = 5 0 0 0 0 0 = 2 5 × 5 6 .
Since we require that 0 < a , b < c < 1 0 0 0 , we will need to account for all (ordered) pairwise factorizations of 5 0 0 0 0 0 where both factors are less than 1 0 0 0 , in which cases we then assign one of the factors to 1 0 0 0 − a and the other to 1 0 0 0 − b . The only ways to achieve this is with 5 4 × ( 2 5 × 5 2 ) = 6 2 5 × 8 0 0 , or the reverse 8 0 0 × 6 2 5 , in which case, respectively, 1 0 0 0 − a = 6 2 5 ⟹ a = 3 7 5 and 1 0 0 0 − b = 8 0 0 ⟹ b = 2 0 0 , or the reverse a = 2 0 0 , b = 3 7 5 . There are thus n = 2 possible triplets, namely ( a , b , c ) = ( 3 7 5 , 2 0 0 , 4 2 5 ) or ( 2 0 0 , 3 7 5 , 4 2 5 ) , and so
n + ∑ a b c = 2 + 2 × ( 2 0 0 × 3 7 5 × 4 2 5 ) = 6 3 7 5 0 0 0 2 .