Find Pythagorean Triple

For a , b , c N a,b,c\in\mathbb N and a , b < c a,b<c there are n n Pythagorean Triple who satisfy the equation

a + b + c = 1000 \large a+b+c=1000

Find the value of n n and a , b , c a,b,c .

Submit your answer as n + a b c = ? ? \large n+ \sum{abc}=??


  • If a , b , c N a,b,c\in\mathbb N and ( a , b , c ) (a,b,c) satisfy a 2 + b 2 = c 2 a^2+b^2=c^2 then ( a , b , c ) (a,b,c) is called Pythagorean Triple


The answer is 63750002.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We require that

a + b + a 2 + b 2 = 1000 a 2 + b 2 = 1000 ( a + b ) a 2 + b 2 = 100 0 2 + ( a + b ) 2 2000 ( a + b ) a + b + \sqrt{a^{2} + b^{2}} = 1000 \Longrightarrow \sqrt{a^{2} + b^{2}} = 1000 - (a + b) \Longrightarrow a^{2} + b^{2} = 1000^{2} + (a + b)^{2} - 2000(a + b)

a 2 + b 2 = 1000000 + a 2 + b 2 + 2 a b 2000 a 2000 b a b 1000 a 1000 b = 500000 \Longrightarrow a^{2} + b^{2} = 1000000 + a^{2} + b^{2} + 2ab - 2000a - 2000b \Longrightarrow ab - 1000a - 1000b = -500000

( a 1000 ) ( b 1000 ) = 500000 ( 1000 a ) ( 1000 b ) = 500000 = 2 5 × 5 6 \Longrightarrow (a - 1000)(b - 1000) = 500000 \Longrightarrow (1000 - a)(1000 - b) = 500000 = 2^{5} \times 5^{6} .

Since we require that 0 < a , b < c < 1000 0 \lt a,b \lt c \lt 1000 , we will need to account for all (ordered) pairwise factorizations of 500000 500000 where both factors are less than 1000 1000 , in which cases we then assign one of the factors to 1000 a 1000 - a and the other to 1000 b 1000 - b . The only ways to achieve this is with 5 4 × ( 2 5 × 5 2 ) = 625 × 800 5^{4} \times (2^{5} \times 5^{2}) = 625 \times 800 , or the reverse 800 × 625 800 \times 625 , in which case, respectively, 1000 a = 625 a = 375 1000 - a = 625 \Longrightarrow a = 375 and 1000 b = 800 b = 200 1000 - b = 800 \Longrightarrow b = 200 , or the reverse a = 200 , b = 375 a = 200, b = 375 . There are thus n = 2 n = 2 possible triplets, namely ( a , b , c ) = ( 375 , 200 , 425 ) (a,b,c) = (375,200,425) or ( 200 , 375 , 425 ) (200,375,425) , and so

n + a b c = 2 + 2 × ( 200 × 375 × 425 ) = 63750002 n + \displaystyle\sum abc = 2 + 2 \times (200 \times 375 \times 425) = \boxed{63750002} .

After seeing the above solution. W e w a n t f ( a , b ) = a + b + c = 1000. B u t c = a 2 + b 2 , a q u a d r a t i c . A l s o f ( a , b ) = f ( b , a ) , w e o n l y h a v e t w o s o l u t i o n s , ( a , b ) a n d ( b , a ) . n = 2. I f x , y , z a r e p r i m a r y t r i p l e s s u c h t h a t f o r a n i n t e g e r K , a + b + c = K ( x + y + z ) = K S = 1000. T h e n x + y + z m u s t b e e q u a l t o a f a c t o r o f 1000. S i n c e 1000 = 2 3 5 2 , n u m b e r o f f a c t o r s a r e ( 3 + 1 ) ( 3 + 1 ) 2 = 14. F a c t o r s o f 1000 = 2 , 4 , 5 , 8 , 10 , 20 , 25 , 40 , 50 , 100 , 125 , 200 , 250 , 500. S o w e s t a r t c h e c k i n g p r i m a r y t r i p l e s a n d r e j e c t t r i p l e w i t h S a n y o f t h e f a c t o r s g i v e n a b o v e . T r i p l e ( 3 , 4 , 5 ) : 3 + 4 + 5 = 12 , r e j e c t s i n c e a n y o f t h e a b o v e f a c t o r s . T r i p l e ( 5 , 12 , 13 ) : 5 + 12 + 13 = 30 , r e j e c t , s i n c e a n y o f t h e a b o v e f a c t o r s . T r i p l e : ( 8 , 15 , 17 ) 8 + 15 + 17 = S = 40 , i t m a t c h e s w i t h f a c t o r 40. s o K = 1000 / 40 = 25. ( a , b , c ) = ( 25 8 25 15 25 , 17 ) = ( 200 , 375 , 425 ) . a n d ( 375 , 200 , 425 ) . S o n = 2 a n d a n s w e r = 2 + 2 31875001 = 63750002. . I f t h e t r i p l e ( a , b , c ) i s p r i m a r y , K = 1. We~ want~f(a,b)= a+b+c=1000. ~But~c=\sqrt{a^2+b^2},~~a~quadratic.\\ Also~f(a,b)=f(b,a), ~~\therefore~we ~only~have~two~solutions,~(a,b)~and~(b,a).~~n=2.\\ If~ x,y,z~ are~ primary~ triples~ such ~that~ for~an~ integer~ K,~a+b+c=K(x+y+z)=\Large K*S=1000.\\ Then~ x+y+z~ must~ be ~equal~ to~ a ~factor~ of ~1000.\\ Since~1000=2^3*5^2,~number~of~factors~are~(3+1)*(3+1)-2=14.\\ Factors~ of~ 1000=2,4,5,8,10,20,25,40,50,100,125,200,250,500.\\ So ~we~start~checking~primary~triples~and~reject ~triple~~with~S~\neq~any~of~the~factors~given~above.\\ ~~~~~~~\\ Triple~(3,4,5):-~~~~3+4+5=~12,~~reject~~~since~~\neq~any~of~the~above~factors. \\ Triple~(5,12,13):-~~~~~5+12+13=~30,~~reject, ~since~~~\neq~any~of~the~above~factors. \\ \color{#3D99F6}{Triple:-(8,15,17)~~~~8+15+17=S=~40,~~it~matches~with~factor~40.~so~K=1000/40=25.~\\ ~~~~~~~~~~~~~~~~~~~~~\therefore~~(a,b,c)=(25*8~ *~ 25*15 ~*~ 25,*17)=(200,375,425).~and~(375,200,425).}\\ So~n=2~and~answer~=\color{#D61F06}{2+~2*31875001=63750002.}.\\ If~the~triple~(a,b,c)~is~primary,~K=1.

I missed it since I did not consider both (a,b,c) and (b,a,c).

Niranjan Khanderia - 3 years, 5 months ago
Md Mehedi Hasan
Nov 26, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...