Find sum of the series

Algebra Level 3

s = 1 + 1 2 + 1 3 + 1 4 + + 1 100 . \large s = 1 + \frac 1{\sqrt 2} + \frac 1{\sqrt 3} + \frac 1{\sqrt 4} + \cdots + \frac 1{\sqrt{100}}.

How much is s \lfloor s\rfloor ?

29 56 32 23 18

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anirudh Sreekumar
Dec 21, 2017

S = x = 1 100 1 x We have, 2 x + x < 2 x + x 1 x 1 1 x < 2 × ( x x 1 ) 1 + x = 2 100 1 x < 1 + x = 2 100 2 × ( x x 1 ) x = 1 100 1 x < 1 + 2 ( 100 1 ) x = 1 100 1 x < 19 ( 1 ) Similarly, 2 x + x > 2 x + x + 1 1 x > 2 × ( x + 1 x ) x = 1 100 1 x > x = 1 100 2 × ( x + 1 x ) x = 1 100 1 x > 2 ( 101 1 ) > 2 ( 100 1 ) x = 1 100 1 x > 18 ( 2 ) From ( 1 ) and ( 2 ) , 18 < x = 1 100 1 x < 19 x = 1 100 1 x = 18 \begin{aligned}S&=\sum_{x=1}^{100} \dfrac{1}{\sqrt{x}}\\ \text{We have, } \\ \dfrac{2}{\sqrt{x}+\sqrt{x}}&<\dfrac{2}{\sqrt{x}+\sqrt {x-1}} \hspace{4mm}\color{#3D99F6} x\geq1\\ \implies \dfrac{1}{\sqrt{x}}&<2\times(\sqrt{x}-\sqrt{x-1})\\ \implies 1 +\sum_{x=2}^{100} \dfrac{1}{\sqrt{x}}&<1+\sum_{x=2}^{100} 2\times(\sqrt{x}-\sqrt{x-1})\\ \implies \sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}&<1+2(\sqrt{100}-\sqrt{1})\\ \implies \sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}&<19 \hspace{4mm}\color{#3D99F6} (1)\\\\ \text{Similarly,}\\ \dfrac{2}{\sqrt{x}+\sqrt{x}}&>\dfrac{2}{\sqrt{x}+\sqrt {x+1}}\\ \implies \dfrac{1}{\sqrt{x}}&>2\times(\sqrt{x+1}-\sqrt{x})\\ \implies \sum_{x=1}^{100} \dfrac{1}{\sqrt{x}}&>\sum_{x=1}^{100} 2\times(\sqrt{x+1}-\sqrt{x})\\ \implies \sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}&>2(\sqrt{101}-\sqrt{1})>2(\sqrt{100}-\sqrt{1})\\ \implies \sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}&>18 \hspace{4mm}\color{#3D99F6} (2)\\\\ \text{From } \color{#3D99F6}(1) \color{#333333}\text{ and } \color{#3D99F6}(2),\\ 18&<\sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}<19 \\ \implies \Bigl \lfloor{\sum_{x=1}^{100}\dfrac{1}{\sqrt{x}}}\Bigr \rfloor&=18\end{aligned}

Genius!!!!!!

Chan Tin Ping - 3 years, 5 months ago

Ah, I remember that day, PRE RMO 2016 WB Region, :D .

Md Zuhair - 3 years, 3 months ago
Arjen Vreugdenhil
Dec 21, 2017

We know the exact values of 1 / 4 1/\sqrt{4} , 1 / 9 1/\sqrt{9} , etc. The neighboring terms have similar values. Divide them into "chunks": 1 3 + 1 4 + 1 5 + 1 6 4 2 = 2 ; 1 7 + 1 8 + 1 9 + 1 10 + 1 11 + 1 12 6 3 = 2 1 73 + + 1 90 18 9 = 2 \frac1{\sqrt3} + \frac1{\sqrt4} + \frac1{\sqrt5} + \frac1{\sqrt6} \approx \frac 4 2 = 2; \\ \frac 1{\sqrt7} + \frac 1{\sqrt8} + \frac 1{\sqrt9} + \frac 1{\sqrt{10}} + \frac 1{\sqrt{11}} + \frac 1{\sqrt{12}} \approx \frac 6 3 = 2 \\ \vdots \\ \frac 1{\sqrt{73}} + \cdots + \frac 1{\sqrt{90}} \approx \frac{18}{9} = 2 1 91 + + 1 100 10 10 = 1 \frac 1{\sqrt{91}} + \cdots + \frac 1{\sqrt{100}} \approx \frac{10}{10} = 1 The sums of each of these 9 terms is approximately equal to 17. Add the first two terms, 1 + 1 / 2 1 + 3 2 1 + 1/\sqrt{2} \approx 1 + \tfrac32 to conclude that the sum is close to 18 1 2 18\tfrac12 .

We begin by knowing the fact that f ( x ) = 1 x \displaystyle f(x)=\dfrac{1}{\sqrt{x}} is decreasing and also by drawing some rectangles to estimate the integral we have,

s 1 1 100 1 x d x s \displaystyle s-1\leq \int_{1}^{100} {\dfrac{1}{\sqrt{x}}dx} \leq s

So,

18 s 18.17 \displaystyle 18 \leq s \leq 18.17 and therefore,

s = 18 \displaystyle \left\lfloor s \right\rfloor =\boxed{18}

The same way I did it!

Zakir Husain - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...