Find Sum!!

Algebra Level 2

1 + 3 + 7 + 15 + 31 . . . n t e r m s F i n d S u m o f f i r s t 10 t e r m s . 1\quad +\quad 3\quad +\quad 7\quad +\quad 15\quad +\quad 31\quad ...\quad n\quad terms\\ Find\quad Sum\quad of\quad first\quad 10\quad terms.

1012 2048 1024 2036

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

You may also note that by the Method of Differences that the difference are in G.P. , so you can write the T r T_r of the sequence as T r = a r n 1 + b n + c T_{r} = a\cdot r^{n-1} + b\cdot n + c .

Now , to determine the constants a , b a,b and c c we put n = 1 , 2 , 3 , n=1,2,3 , \dots and equate them with the corresponding terms of the given series .

Which comes out to be : a = 2 , b = 0 , c = 1 a=2,b=0,c=-1

T r = 2 r 1 S n = r = 1 n 2 r r = 1 n 1 = 2 ( 2 10 1 ) 10 = 2036 T_r = 2^{r} - 1 \\ \rightarrow S_n = \sum_{r=1}^{n} 2^{r} - \sum_{r=1}^{n} 1 \\= 2\cdot (2^{10} -1 ) - 10 = 2036

Bhargav Upadhyay
Feb 13, 2015

L e t S = 1 + 3 + 7 + 15 + 31 + . . . + T n ( 1 ) S = 1 + 3 + 7 + 15 + . . . + T n 1 + T n ( 2 ) P e r f o r m ( 1 ) ( 2 ) 0 = 1 + ( 2 + 4 + 8 + 16 + . . . ( n 1 ) t e r m s ) T n T n = 1 + ( 2 + 4 + 8 + 16 + . . . ( n 1 ) t e r m s ) T n = 1 + 2 ( 2 n 1 1 ) ( 2 1 ) = 2 n 1 S n = T n = ( 2 n 1 ) = ( 2 + 2 2 + 2 3 + . . . + 2 n ) n S n = 2 ( n + 1 ) n 2 S 10 = 2 11 10 2 = 2036. Let\\ S\quad =\quad 1\quad +\quad 3\quad +\quad 7\quad +\quad 15\quad +\quad 31+\quad ...\quad +\quad { T }_{ n }\quad --(1)\\ S\quad =\quad \quad \quad \quad \quad 1\quad +\quad 3\quad +\quad 7\quad +\quad 15\quad +\quad ...\quad +\quad { T }_{ n-1 }\quad +\quad { T }_{ n }\quad \quad --(2)\\ Perform\quad (1)\quad -\quad (2)\\ \therefore \quad 0\quad =\quad 1\quad +\quad (2\quad +\quad 4\quad +\quad 8\quad +\quad 16\quad +...\quad (n-1)\quad terms)\quad -\quad { T }_{ n }\\ \therefore \quad { T }_{ n }\quad =\quad 1\quad +\quad (2\quad +\quad 4\quad +\quad 8\quad +\quad 16\quad +...\quad (n-1)\quad terms)\\ \therefore \quad { T }_{ n }\quad =\quad 1\quad +\quad 2\quad *\quad \frac { ({ 2 }^{ n-1 }-1) }{ (2-1) } \quad =\quad { 2 }^{ n }-1\\ \therefore { S }_{ n }\quad =\quad \sum { { T }_{ n } } \quad =\quad \sum { ({ 2 }^{ n }-1) } \quad =\quad (2+{ 2 }^{ 2 }+{ 2 }^{ 3 }+...+{ 2 }^{ n })-n\\ \therefore \quad { S }_{ n }\quad =\quad { 2 }^{ (n+1) }-n-2\\ \therefore \quad { S }_{ 10 }\quad =\quad { 2 }^{ 11 }-10-2\quad =\quad 2036.\quad \\

Fox To-ong
Feb 18, 2015

its a sequence who's difference are multiplied by 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...