Find the 101st term!

Consider the recurrence relation a n = 2 a n 1 + 3 a n 2 + 3 n a_n = 2a_{n-1} + 3 a_{n-2} + 3^n for n 2 n \geq 2 with initial conditions a 0 = 1 , a 1 = 1. a_0 = -1, a_1 = 1.

Given that a 100 a_{100} is in the form of

x y z w v \LARGE \frac {x\cdot y^z - w}{v}

where x , y , w , z x,y,w,z are prime numbers and v v as a perfect square, what is the value of w + v + x + y + z w+v+x+y+z ?


The answer is 524.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the generating function:

f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . 2 x f ( x ) = 2 a 0 x + 2 a 1 x 2 + 2 a 2 x 3 + 2 a 3 x 4 + . . . 3 x 2 f ( x ) = 3 a 0 x 2 + 3 a 1 x 3 + 3 a 2 x 4 + a 3 x 5 + . . . f ( x ) ( 1 2 x 3 x 2 ) = a 0 + ( a 1 2 a 0 ) x + i = 2 ( 3 x ) i f ( x ) ( 1 2 x 3 x 2 ) = 2 + i = 0 ( 3 x ) i = 2 + 1 1 3 x f ( x ) = 2 ( 3 x 1 ) ( x + 1 ) + 1 ( x + 1 ) ( 1 3 x ) 2 \quad \quad f(x)={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+{ a }_{ 3 }{ x }^{ 3 }+...\\ 2xf(x)=\quad \quad 2{ a }_{ 0 }x+{ 2a }_{ 1 }{ x }^{ 2 }+{ 2a }_{ 2 }{ x }^{ 3 }+2{ a }_{ 3 }{ x }^{ 4 }+...\\ 3{ x }^{ 2 }f(x)=\quad \quad \quad \quad \quad \quad 3{ a }_{ 0 }{ x }^{ 2 }+{ 3a }_{ 1 }{ x }^{ 3 }+{ 3a }_{ 2 }{ x }^{ 4 }+{ a }_{ 3 }{ x }^{ 5 }+...\\ \Rightarrow f(x)(1-2x-3{ x }^{ 2 })={ a }_{ 0 }+({ a }_{ 1 }-2{ a }_{ 0 })x+\sum _{ i=2 }^{ \infty }{ { (3x) }^{ i } } \\ \Rightarrow f(x)(1-2x-3{ x }^{ 2 })=-2+\sum _{ i=0 }^{ \infty }{ { (3x) }^{ i } } =-2+\frac { 1 }{ 1-3x } \\ \Rightarrow f(x)=\frac { 2 }{ (3x-1)(x+1) } +\frac { 1 }{ (x+1){ (1-3x) }^{ 2 } }

Now we use partial fractions to get:

f ( x ) = 3 4 ( 1 3 x ) 2 + 21 16 ( 3 x 1 ) 7 16 ( x + 1 ) f(x)=\frac { 3 }{ 4{ (1-3x) }^{ 2 } } +\frac { 21 }{ 16(3x-1) } -\frac { 7 }{ 16(x+1) }

Using binomial theorem for negative indices , we can now find the closed form formula for a n a_n .

Hence, a 100 = 397 ( 3 101 ) 7 16 a_{100}=\frac { 397({ 3 }^{ 101 })-7 }{ 16 }

Therefore the answer is 397 + 3 + 101 + 7 + 16 = 524 397+3+101+7+16=\boxed{524}

whoah, clever use of generating functions!!! can you explain the line "using binomial theorem for negative indices", i don't seem to get how it's done. thanks!!!

Willia Chang - 4 years, 11 months ago

How do you know this function favors the reaccurence relation ??

Vishal Yadav - 4 years, 2 months ago

Log in to reply

And even if it does how to, at first place know what the function could be ?

I mean ,how do we map from the reccurence to the function ?

Vishal Yadav - 4 years, 2 months ago

Log in to reply

It is easier to express the infinite series for f(x) as the sum of the first two terms (with known coefficients) and a general sum of the remaining terms. Then substituting the recurrence relation in the latter and factoring out relevant coefficients and powers of x, you can arrive at f(x) representations again, possibly barring some first terms that you add and subtract to complete f(x). This way you get an equation containing f(x) in both parts, just like in the explanation above.

Raghav used an algorithm stating which multipliers should be applied to f(x), but you can easily see how they follow from the above procedure.

Yury Kartynnik - 1 year, 9 months ago

I come up with the solution : (3^103(1/2-A/2)-A)/9 So I deduce : v=9 ; y=3 ; z=103 ; x=2 ; w=5. Same with : (v, y, z, x, w) =(9, 3,103,3,7). I think the problem with these are that it gives me minus x values. But some interesting things of this is that you may find a lot of solutions (i dont know if infinitely many ;) ) when you give A values of 3, 5, 23, 47etc. Sad part is that this expression doesnt contemplarte the solution given above.

Guido Dinello - 1 year, 8 months ago
Carsten Meyer
Apr 6, 2021

Multiply the recurrence relation by x n x^n and afterwards eliminate all negative index-shifts with n : = n 2 , n n n':=n-2,\quad n'\rightarrow n : a n + 2 x n + 2 = 2 x a n + 1 x n + 1 + 3 x 2 a n x n + 9 x 2 ( 3 x ) n n = 0 A ( x ) : = n = 0 a n x n A ( x ) a 0 a 1 x = 2 x ( A ( x ) a 0 ) + 3 x 2 A ( x ) + 9 x 2 1 3 x ( ) for x < 1 3 \begin{aligned} && a_{n+2}x^{n+2} &= 2x\cdot a_{n+1}x^{n+1}+3x^2\cdot a_nx^n + 9x^2\cdot (3x)^n &&&&&&\left| \sum_{n=0}^\infty \ldots\right. \quad \left|A(x) :=\sum_{n=0}^\infty a_nx^n\right.\\[1.5em] \Rightarrow&& A(x)-a_0-a_1x &= 2x\left( A(x) -a_0 \right) + 3x^2A(x) + \frac{9x^2}{1-3x} &&&&&& \left| \red{(*)}\text{ for }|x|<\frac{1}{3} \right. \end{aligned}

Insert the initial conditions ( a 0 , a 1 ) = ( 1 ; 1 ) (a_0,\:a_1)=(-1;\:1) and solve for A ( x ) A(x) . Simplify the result with partial fraction decomposition (PFD): A ( x ) = 9 x 2 + 6 x 1 ( 1 3 x ) ( 1 2 x 3 x 2 ) = 6 x 1 ( 1 3 x ) 2 ( 1 + x ) = PFD 3 4 1 ( 1 3 x ) 2 21 16 1 1 3 x 7 16 1 1 + x = ( ) n = 0 [ 3 4 ( n + 1 n ) 3 n 21 16 3 n 7 16 ( 1 ) n ] x n = ! n = 0 a n x n , x < 1 3 \begin{aligned} A(x) &=\frac{\cancel{\mp 9x^2} + 6x-1}{(1-3x)(1-2x-3x^2)} = \frac{6x-1}{(1-3x)^2(1+x)}\underset{\text{PFD}}{=}\frac{3}{4}\cdot\frac{1}{(1-3x)^2} - \frac{21}{16}\cdot\frac{1}{1-3x} -\frac{7}{16}\cdot\frac{1}{1+x}\\[1.5em] &\underset{\red{(*)}}{=}\sum_{n=0}^\infty \left[ \frac{3}{4}\cdot\binom{n+1}{n}3^n - \frac{21}{16}\cdot 3^n - \frac{7}{16}\cdot (-1)^n \right]x^n\overset{!}{=}\sum_{n=0}^\infty a_nx^n,\quad |x|<\frac{1}{3} \end{aligned}

Comparing coefficients we can reconstruct the sequence a n a_n : a n = 3 4 ( n + 1 n ) 3 n 21 16 3 n 7 16 ( 1 ) n = ( 4 n 3 ) 3 n + 1 7 ( 1 ) n 16 a 100 = 397 3 101 7 4 2 \begin{aligned} a_n&=\frac{3}{4}\cdot\binom{n+1}{n}3^n - \frac{21}{16}\cdot 3^n - \frac{7}{16}\cdot (-1)^n=\frac{(4n-3)3^{n+1} - 7(-1)^n}{16} &&&\Rightarrow &&&& a_{100} &=\frac{397\cdot 3^{101}-7}{4^2} \end{aligned}

The answer v + w + x + y + z = 4 2 + 7 + 397 + 3 + 101 = 524 v+w+x+y+z=4^2 + 7 + 397+3+101=\boxed{524} satisfies all conditions for v , w , x , y , z v,\:w,\:x,\:y,\:z .


generalized geometric sum: n = 0 ( n + m n ) q n = 1 ( 1 q ) m + 1 for q < 1 , m N 0 ( ) \begin{aligned} \text{generalized geometric sum:} &&&& \sum_{n=0}^\infty\binom{n+m}{n}q^n &= \frac{1}{(1-q)^{m+1}} & \text{for} && |q| &< 1, & m & \in\mathbb{N}_0 & \red{(*)} \end{aligned}


Rem.: If we introduce z : = x 1 C z:=x^{-1}\in\mathbb{C} , the generating function A ( x ) A(x) becomes A ( z 1 ) A(z^{-1}) , the Z \mathcal{Z} -transform of a k a_k from digital signal theory!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...