Find the Angle #2

Geometry Level 3

C A D = B A C = 1 0 \angle CAD = \angle BAC = 10^\circ and D B A = C B D = 5 0 \angle DBA = \angle CBD = 50^\circ .

Find B D C \angle BDC .

This problem is a part of the set Find the Angle!


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sharky Kesa
Dec 23, 2017

Easy way:

Extend A D AD and B C BC to meet at E E . Since B D BD and A C AC are angle bisectors, their intersection (call it I I ) must be the incenter of Δ A B E \Delta ABE . We also have A E B = 6 0 \angle AEB = 60^{\circ} by angle sum of triangle, so C E I = 3 0 \angle CEI = 30^{\circ} . Furthermore, A I B = 12 0 \angle AIB = 120^{\circ} , so D I C = 12 0 \angle DIC = 120^{\circ} . Thus, we have D I C E DICE is cyclic, since the opposite angles sum to 18 0 180^{\circ} . Therefore, B D C = I E C = 3 0 \angle BDC = \angle IEC = 30^{\circ} .

Jun Arro Estrella
Apr 26, 2015

I used trigonometry here I assumed a side length equal to 12 in AB then continuously used the sine law.

Chew-Seong Cheong
May 19, 2018

Relevant wiki: Sine Rule (Law of Sines)

Let A C AC and B D BD meet at O O . Then A O B = C O D = 18 0 1 0 5 0 = 12 0 \angle AOB = \angle COD = 180^\circ - 10^\circ - 50^\circ = 120^\circ ; A O D = B O C = 36 0 24 0 2 = 6 0 \angle AOD = \angle BOC = \dfrac {360^\circ - 240^\circ}2 = 60^\circ ; O C B = 7 0 \angle OCB = 70^\circ and A D O = 11 0 \angle ADO = 110^\circ .

Let A B = 1 AB = 1 . By sine rule: O B A B = sin O A B sin A O B \dfrac {OB}{AB} = \dfrac {\sin \angle OAB}{\sin \angle AOB} O B = sin 1 0 sin 12 0 × A B = sin 1 0 sin 6 0 \implies OB = \dfrac {\sin 10^\circ}{\sin 120^\circ} \times AB = \dfrac {\sin 10^\circ}{\sin 60^\circ} . By sine rule again: O C = sin O B C sin O C B × O B = sin 5 0 sin 7 0 × sin 1 0 sin 6 0 OC = \dfrac {\sin \angle OBC}{\sin \angle OCB} \times OB = \dfrac {\sin 50^\circ}{\sin 70^\circ} \times \dfrac {\sin 10^\circ}{\sin 60^\circ} .

Similarly, A O = sin A B O sin A O B × A B = sin 5 0 sin 6 0 AO = \dfrac {\sin \angle ABO}{\sin \angle AOB} \times AB = \dfrac {\sin 50^\circ}{\sin 60^\circ} . And D O = sin D A O sin A D O × A O = sin 1 0 sin 11 0 × sin 5 0 sin 6 0 = sin 1 0 sin 7 0 × sin 5 0 sin 6 0 = O C DO = \dfrac {\sin \angle DAO}{\sin \angle ADO} \times AO = \dfrac {\sin 10^\circ}{\sin 110^\circ} \times \dfrac {\sin 50^\circ}{\sin 60^\circ} = \dfrac {\sin 10^\circ}{\sin 70^\circ} \times \dfrac {\sin 50^\circ}{\sin 60^\circ} = OC .

Therefore, D O C \triangle DOC is isosceles with C O D = 12 0 \angle COD=120^\circ , then B D C = O D C = O C D = 18 0 12 0 2 = 30 \angle BDC = \angle ODC = \angle OCD = \dfrac {180^\circ-120^\circ}2 = \boxed{30}^\circ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...