A geometry problem by Aly Ahmed

Geometry Level 3

Find the measure of angle x x in degrees.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rab Gani
Aug 1, 2017

Let the height of triangle ABC is h, and DC=b, so BD= h√2. ΔABC is similar to ΔBDC : BC/DC = 2DC/BC, BC= b√2. [BDC] = hb/2 = ½ (h√2. b√2. sin x), six x= ½, x=30

Apply sine rule on B D C \triangle BDC . We have D C sin x = B C sin 135 \dfrac{DC}{\sin~x}=\dfrac{BC}{\sin~135} \implies D C B C = sin x sin 135 = 2 sin x \dfrac{DC}{BC}=\dfrac{\sin~x}{\sin~135}=\sqrt{2} \sin~x

Apply sine rule on A B C \triangle ABC . We have B C sin x = A C 135 \dfrac{BC}{\sin~x}=\dfrac{AC}{135} \implies B C A C = sin x sin 135 = 2 sin x \dfrac{BC}{AC}=\dfrac{\sin~x}{\sin~135}=\sqrt{2} \sin~x

Since 2 D C = A C 2DC=AC , we have

2 2 sin x ( B C ) = B C 2 sin x 2\sqrt{2}\sin~x(BC)=\dfrac{BC}{\sqrt{2}\sin~x} or

sin x ) 2 = 1 4 \sin~x)^2=\dfrac{1}{4}

sin x = 1 2 \sin~x=\dfrac{1}{2}

x = sin 1 ( 1 2 ) x= \sin^{-1} \left(\dfrac{1}{2}\right)

x = π 6 x=\dfrac{\pi}{6}

or

x = 3 0 \color{#D61F06}\large \boxed{x=30^\circ}

Ahmad Saad
Jul 19, 2017

Chew-Seong Cheong
Jul 19, 2017

Using sine rule , we have:

B D A D = B D A D Note that A D = D C sin B A D sin A B D = sin B C D sin C B D sin x sin ( 13 5 x ) = sin ( 4 5 x ) sin x sin 2 x = sin ( 4 5 x ) sin ( 13 5 x ) 1 2 ( 1 cos 2 x ) = ( 1 2 cos x 1 2 sin x ) ( 1 2 cos x + 1 2 sin x ) 1 2 ( 1 cos 2 x ) = 1 2 ( cos 2 x sin 2 x ) 1 cos 2 x = cos 2 x cos 2 x = 1 2 2 x = 6 0 x = 30 \begin{aligned} \frac {BD}{\color{#3D99F6}AD} & = \frac {BD}{\color{#3D99F6}AD} & \small \color{#3D99F6} \text{Note that }AD = DC \\ \frac {\sin \angle BAD}{\sin \angle ABD} & = \frac {\sin \angle BCD}{\sin \angle CBD} \\ \frac {\sin x}{\sin (135^\circ - x)} & = \frac {\sin (45^\circ - x)}{\sin x} \\ \sin^2 x & = \sin (45^\circ - x) \sin (135^\circ - x) \\ \frac 12 \left(1-\cos 2x \right) & = \left(\frac 1{\sqrt 2}\cos x - \frac 1{\sqrt 2}\sin x \right) \left(\frac 1{\sqrt 2}\cos x + \frac 1{\sqrt 2}\sin x \right) \\ \frac 12 \left(1-\cos 2x \right) & = \frac 12 (\cos^2x - \sin^2 x) \\ 1-\cos 2x & = \cos 2x \\ \implies \cos 2x & = \frac 12 \\ 2x & = 60^\circ \\ \implies x & = \boxed{30}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...