This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let ∠ B = θ
△ ِ A D C is Isosceles triangle //since AD=AC
⇒ ∠ A D C = ∠ A C D = 4 0 ∘
⇒ A C sin ( ∠ A D C ) = D C sin ( ∠ D A C ) // Sine Rule
⇒ A C sin ( 4 0 ∘ ) = D C sin ( 1 0 0 ∘ ) ⇒ A C D C = sin ( 4 0 ∘ ) sin ( 1 0 0 ∘ )
⇒ A C D C = sin ( 4 0 ∘ ) sin ( 8 0 ∘ ) = sin ( 4 0 ∘ ) 2 sin ( 4 0 ∘ ) cos ( 4 0 ∘ ) = 2 cos ( 4 0 ∘ ) → ( 1 )
In △ ِ B D C ∠ B D C = 1 4 0 ∘ //supplementary angles
⇒ ∠ B C D = 4 0 ∘ − θ
∠ A C B = ∠ B C D + ∠ A C D = 4 0 ∘ − θ + 4 0 ∘ = 8 0 ∘ − θ
Apply Sine Rule for △ ِ A B C
A B sin ( ∠ A C B ) = A C sin ( ∠ B ) ⇒ D C sin ( 8 0 ∘ − θ ) = A C sin ( θ )
⇒ A C D C = sin ( θ ) sin ( 8 0 ∘ − θ ) ⇒ A C D C = sin ( θ ) cos ( 1 0 ∘ + θ )
⇒ A C D C = sin ( θ ) cos ( θ ) cos ( 1 0 ∘ ) − sin ( θ ) sin ( 1 0 ∘ ) = cot ( θ ) cos ( 1 0 ∘ ) − sin ( 1 0 ∘ ) → ( 2 )
from (1) and (2)
cot ( θ ) cos ( 1 0 ∘ ) − sin ( 1 0 ∘ ) = 2 cos ( 4 0 ∘ )
cot ( θ ) = cos ( 1 0 ∘ ) 2 cos ( 4 0 ∘ ) + sin ( 1 0 ∘ )
θ = cot − 1 ( cos ( 1 0 ∘ ) 2 cos ( 4 0 ∘ ) + sin ( 1 0 ∘ ) )
θ = 9 0 ∘ − tan − 1 ( cos ( 1 0 ∘ ) 2 cos ( 4 0 ∘ ) + sin ( 1 0 ∘ ) ) = 3 0 ∘ //since cot − 1 ( θ ) = 2 π − tan − 1 ( θ )