Find the angle B measure

Geometry Level 2


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Jan 19, 2018

Let B = θ \angle B=\theta

ِ A D C \triangle ِADC is Isosceles triangle //since AD=AC

A D C = A C D = 40 \Rightarrow \angle ADC=\angle ACD={ 40 }^{ \circ }

sin ( A D C ) A C = sin ( D A C ) D C \Rightarrow \frac { \sin { \left( \angle ADC \right) } }{ \overline { AC } } =\frac { \sin { \left( \angle DAC \right) } }{ \overline { DC } } // Sine Rule

sin ( 40 ) A C = sin ( 100 ) D C D C A C = sin ( 100 ) sin ( 40 ) \Rightarrow \frac { \sin { \left( { 40 }^{ \circ } \right) } }{ \overline { AC } } =\frac { \sin { \left( { 100 }^{ \circ } \right) } }{ \overline { DC } } \Rightarrow \frac { \overline { DC } }{ \overline { AC } } =\frac { \sin { \left( { 100 }^{ \circ } \right) } }{ \sin { \left( { 40 }^{ \circ } \right) } }

D C A C = sin ( 80 ) sin ( 40 ) = 2 sin ( 40 ) cos ( 40 ) sin ( 40 ) = 2 cos ( 40 ) ( 1 ) \Rightarrow \frac { \overline { DC } }{ \overline { AC } } =\frac { \sin { \left( { 80 }^{ \circ } \right) } }{ \sin { \left( { 40 }^{ \circ } \right) } } =\frac { 2\sin { \left( { 40 }^{ \circ } \right) } \cos { \left( { 40 }^{ \circ } \right) } }{ \sin { \left( { 40 }^{ \circ } \right) } } =2\cos { \left( { 40 }^{ \circ } \right) } \rightarrow \left( 1 \right)

In ِ B D C B D C = 140 \triangle ِBDC\quad \angle BDC={ 140 }^{ \circ } //supplementary angles

B C D = 40 θ \Rightarrow \angle BCD={ 40 }^{ \circ }-\theta

A C B = B C D + A C D = 40 θ + 40 = 80 θ \angle ACB=\angle BCD+\angle ACD={ 40 }^{ \circ }-\theta +{ 40 }^{ \circ }={ 80 }^{ \circ }-\theta

Apply Sine Rule for ِ A B C \triangle ِABC

sin ( A C B ) A B = sin ( B ) A C sin ( 80 θ ) D C = sin ( θ ) A C \frac { \sin { \left( \angle ACB \right) } }{ \overline { AB } } =\frac { \sin { \left( \angle B \right) } }{ \overline { AC } } \Rightarrow \frac { \sin { \left( { 80 }^{ \circ }-\theta \right) } }{ \overline { DC } } =\frac { \sin { \left( \theta \right) } }{ \overline { AC } }

D C A C = sin ( 80 θ ) sin ( θ ) D C A C = cos ( 10 + θ ) sin ( θ ) \Rightarrow \frac { \overline { DC } }{ \overline { AC } } =\frac { \sin { \left( { 80 }^{ \circ }-\theta \right) } }{ \sin { \left( \theta \right) } } \Rightarrow \frac { \overline { DC } }{ \overline { AC } } =\frac { \cos { \left( { 10 }^{ \circ }+\theta \right) } }{ \sin { \left( \theta \right) } }

D C A C = cos ( θ ) cos ( 10 ) sin ( θ ) sin ( 10 ) sin ( θ ) = cot ( θ ) cos ( 10 ) sin ( 10 ) ( 2 ) \Rightarrow \frac { \overline { DC } }{ \overline { AC } } =\frac { \cos { \left( \theta \right) } \cos { \left( { 10 }^{ \circ } \right) } -\sin { \left( \theta \right) } \sin { \left( { 10 }^{ \circ } \right) } }{ \sin { \left( \theta \right) } } =\cot { \left( \theta \right) } \cos { \left( { 10 }^{ \circ } \right) } -\sin { \left( { 10 }^{ \circ } \right) } \rightarrow \left( 2 \right)

from (1) and (2)

cot ( θ ) cos ( 10 ) sin ( 10 ) = 2 cos ( 40 ) \cot { \left( \theta \right) } \cos { \left( { 10 }^{ \circ } \right) } -\sin { \left( { 10 }^{ \circ } \right) } =2\cos { \left( { 40 }^{ \circ } \right) }

cot ( θ ) = 2 cos ( 40 ) + sin ( 10 ) cos ( 10 ) \cot { \left( \theta \right) } =\frac { 2\cos { \left( { 40 }^{ \circ } \right) } +\sin { \left( { 10 }^{ \circ } \right) } }{ \cos { \left( { 10 }^{ \circ } \right) } }

θ = cot 1 ( 2 cos ( 40 ) + sin ( 10 ) cos ( 10 ) ) \theta =\cot ^{ -1 }{ \left( \frac { 2\cos { \left( { 40 }^{ \circ } \right) } +\sin { \left( { 10 }^{ \circ } \right) } }{ \cos { \left( { 10 }^{ \circ } \right) } } \right) }

θ = 90 tan 1 ( 2 cos ( 40 ) + sin ( 10 ) cos ( 10 ) ) = 30 \theta ={ 90 }^{ \circ }-\tan ^{ -1 }{ \left( \frac { 2\cos { \left( { 40 }^{ \circ } \right) } +\sin { \left( { 10 }^{ \circ } \right) } }{ \cos { \left( { 10 }^{ \circ } \right) } } \right) } ={ 30 }^{ \circ } //since cot 1 ( θ ) = π 2 tan 1 ( θ ) \cot ^{ -1 }{ \left( \theta \right) } =\frac { \pi }{ 2 } -\tan ^{ -1 }{ \left( \theta \right) }

What did you do in the last step??

Rahul Singh - 3 years, 4 months ago

arccot(x)=pi/2 - arctan(x)

Hassan Abdulla - 3 years, 4 months ago
Rab Gani
Sep 25, 2018

Let AD=1, and BD=x. Use cos rule twice, then DC = 1.532. x=0.532. CB=1.9696. Use sin rule to find <B. sin B= sin 100/1.9696 = 0.5. B=30.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...