Find the angle x in the shape

Geometry Level 3

In A B C \triangle ABC , A C B = 3 0 \angle ACB = 30^\circ . Points D D and E E on B C BC are such that A D B = 7 5 \angle ADB = 75^\circ and D E = E C DE=EC . Find the measure of D A E \angle DAE in degrees.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In A D E \triangle {ADE} , we have A E D E = sin 75 ° sin x \dfrac{|\overline {AE}|}{|\overline {DE}|}=\dfrac{\sin {75\degree}}{\sin x} . In A E C \triangle {AEC} , we have A E E C = \dfrac{|\overline {AE}|}{|\overline {EC}|}= sin 30 ° sin ( 45 ° x ) \dfrac{\sin 30\degree}{\sin (45\degree -x)} . Since D E = E C |\overline {DE}|=|\overline {EC}| , therefore sin 30 ° × sin x = sin 75 ° × sin ( 45 ° x ) \sin {30\degree}\times \sin x=\sin {75\degree}\times {\sin {(45\degree -x) }} . This implies tan x = 1 3 \tan x=\dfrac{1}{√3} , or x = 30 ° x=\boxed {30\degree}

Chew-Seong Cheong
Jan 24, 2020

Let A F AF be the altitude from A A to B C BC ; then D A F = 1 5 \angle DAF = 15^\circ . Let A C = 2 AC=2 ; then A F = B C × sin 3 0 = 1 AF = BC \times \sin 30^\circ = 1 and F C = 3 FC = \sqrt 3 . We note that F D = A F × tan D A F = tan 1 5 FD = AF \times \tan \angle DAF = \tan 15^\circ and D E = 3 tan 1 5 2 DE = \dfrac {\sqrt 3-\tan 15^\circ}2

F E = tan 1 5 + 3 tan 1 5 2 = 3 + tan 1 5 2 Since tan 1 5 = 2 3 = 1 \begin{aligned} \implies FE & = \tan 15^\circ + \frac {\sqrt 3 - \tan 15^\circ}2 \\ & = \frac {\sqrt 3 + \tan 15^\circ}2 & \small \blue{\text{Since }\tan 15^\circ = 2-\sqrt 3} \\ & = 1 \end{aligned}

Since tan F A E = F E A F = 1 F A E = 4 5 \tan \angle FAE = \dfrac {FE}{AF} = 1 \implies \angle FAE = 45^\circ and D A E = F A E D A F = 4 5 1 5 = 30 \angle DAE = \angle FAE - \angle DAF = 45^\circ - 15^\circ = \boxed{30}^\circ .

Maria Kozlowska
Jan 23, 2020

Here is a construction. All green segments are equal to AC.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...