Let x and y be real numbers satisfying x 4 y 5 + y 4 x 5 = 8 1 0 and x 3 y 6 + y 3 x 6 = 9 4 5 . Evaluate 2 x 3 + ( x y ) 3 + 2 y 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Brilliant !! Step by Step colorful solutions .... Upvoted
This is my own solution:
Take α = x + y and β = x y , noting that x 3 + y 3 = α 3 − 3 α β .
The given equations become { α ⋅ β 4 = 8 1 0 ( α β ) 3 − 3 α β 4 = 9 4 5 .
Substituting the first equation into the second, we get that
( α β ) 3 = 9 4 5 + 3 ⋅ 8 1 0 = 3 3 7 5 ⟹ α β = 1 5 .
Combining this with the first equation, we find that
β 3 = 8 1 0 / 1 5 = 5 4
and
α 3 = 3 3 7 5 / 5 4 = 1 2 5 / 2 .
The problem asks us to compute
2 α 3 + β 3 − 6 α β = 1 2 5 + 5 4 − 9 0 = 8 9 .
We can factor the equations given to us into x 4 y 4 ( x + y ) = 8 1 0
x 3 y 3 ( x 3 + y 3 ) = 9 4 5
The expression we want is the same as 2 ( x 3 + y 3 ) + ( x y ) 3 = x 3 y 3 1 8 9 0 + x 3 y 3 . Thus we want the value of x 3 y 3 . Cubing the first equation gives us
x 1 2 y 1 2 ( x 3 + y 3 + 3 x y ( x + y ) ) = 8 1 0 3 ⟹ x 1 2 y 1 2 ( x 3 y 3 9 4 5 + x 4 y 4 3 ⋅ 8 1 0 ⋅ x y ) = 8 1 0 3
⟹ ( 9 4 5 + 3 ⋅ 8 1 0 ) x 9 y 9 = 8 1 0 3 ⟹ x 3 y 3 = 1 5 8 1 0 = 5 4
Therefore, the answer is 5 4 1 8 9 0 + 5 4 = 8 9
From x 3 y 3 ( x 3 + y 3 ) = x 6 y 3 + x 3 y 6 = 9 4 5 , we obtain that x 3 y 3 [ ( x + y ) 3 − 3 x y ( x + y ) ] = 9 4 5 . So x 3 y 3 ( x + y ) 3 = 9 4 5 + 3 x 4 y 4 ( x + y ) = 9 4 5 + 3 ( x 5 y 4 + x 4 y 5 ) = 9 4 5 + 3 ∗ 8 1 0 = 3 3 7 5 . Taking cube root of both sides we get that x y ( x + y ) = 1 5 . Dividing x 4 y 4 ( x + y ) = x 5 y 4 + x 4 y 5 = 8 1 0 side by side by x y ( x + y ) = 1 5 we obtain x 3 y 3 = 5 4 ( ∗ )
Now, dividing x 3 y 3 ( x 3 + y 3 ) = x 6 y 3 + x 3 y 6 = 9 4 5 side by side by x 3 y 3 = 5 4 we obtain x 3 + y 3 = 5 4 9 4 5 = 2 3 5 ( ∗ ∗ ) Therefore, using ( ∗ ) and ( ∗ ∗ ) , 2 x 3 + ( x y ) 3 + 2 y 3 = 2 ( x 3 + y 3 ) + ( x y ) 3 = 2 ( 2 3 5 ) + 5 4 = 8 9 .
Divide it 945/810=(x²-xy+y²)/(xy)=7/6 So 6x²-6xy+6y²=7xy i.e. 6x²-13xy+6y²=0 and divide by y² and replace x/y=t so we'll get 6t²-13t+6=0 i.e. t^(±1)=3/2 So x/y =3/2 ( for 2/3 is similiar ) 2x=3y,so from 32x⁴y⁴(x+y)=32×810 We get (2x)⁴y⁴(2x+2y)=32×810 i.e. (3y)⁴y⁴(3y+2y)=32×81×5×2 so y^9=64=2^6 so y³=4,so (2/3x)³=4, i.e. x³=27/2 so now is our answer 2×4+54+27=89
basically just factor and equate and you get x 3 y 3 = 5 4 and what we're trying to find is 2 ( x 3 y 3 9 4 5 ) + x 3 y 3
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ x 4 y 5 + y 4 x 5 = 8 1 0 ⇒ ⎩ ⎪ ⎨ ⎪ ⎧ ( x y ) 4 ( y + x ) = 8 1 0 ⇒ x + y = ( x y ) 4 8 1 0 ( x y ) 3 ( x y 2 + y x 2 ) = 8 1 0 ⇒ x y 2 + x 2 y = ( x y ) 3 8 1 0 x 3 y 6 + y 3 x 6 = 9 4 5 ⇒ ( x y ) 3 ( y 3 + x 3 ) = 9 4 5 ⇒ x 3 + y 3 = ( x y ) 3 9 4 5
Now, we have:
( x + y ) 3 ( x y ) 1 2 8 1 0 3 ( x y ) 9 8 1 0 3 ⇒ ( x y ) 9 ( x y ) 3 = x 3 + y 3 + 3 ( x 2 y + x y 2 ) = ( x y ) 3 9 4 5 + 3 ( ( x y ) 3 8 1 0 ) = 9 4 5 + 2 4 3 0 = 3 3 7 5 8 1 0 3 = 5 4
Now, we evaluate:
2 x 3 + ( x y ) 3 + 2 y 3 = 2 ( 5 4 9 4 5 ) + 5 4 = 3 5 + 5 4 = 8 9