Find the answer

Algebra Level 5

Let x x and y y be real numbers satisfying x 4 y 5 + y 4 x 5 = 810 x^4y^5+y^4x^5=810 and x 3 y 6 + y 3 x 6 = 945 x^3y^6+y^3x^6=945 . Evaluate 2 x 3 + ( x y ) 3 + 2 y 3 2x^3+(xy)^3+2y^3 .


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Sep 12, 2015

{ x 4 y 5 + y 4 x 5 = 810 { ( x y ) 4 ( y + x ) = 810 x + y = 810 ( x y ) 4 ( x y ) 3 ( x y 2 + y x 2 ) = 810 x y 2 + x 2 y = 810 ( x y ) 3 x 3 y 6 + y 3 x 6 = 945 ( x y ) 3 ( y 3 + x 3 ) = 945 x 3 + y 3 = 945 ( x y ) 3 \begin{cases} x^4y^5+y^4x^5 = 810 \quad \Rightarrow \begin{cases} (xy)^4(y+x) = 810 \quad \quad \quad \Rightarrow \color{#3D99F6} {x+y = \dfrac{810}{(xy)^4}} \\ (xy)^3(xy^2+yx^2) = 810 \quad \Rightarrow \color{#D61F06}{xy^2+x^2y = \dfrac{810}{(xy)^3}} \end{cases} \\ x^3y^6+ y^3x^6 = 945 \quad \Rightarrow (xy)^3(y^3+x^3) = 945 \quad \quad \quad \Rightarrow \color{#20A900}{x^3 + y^3 = \dfrac{945}{(xy)^3}} \end{cases}

Now, we have:

( x + y ) 3 = x 3 + y 3 + 3 ( x 2 y + x y 2 ) 81 0 3 ( x y ) 12 = 945 ( x y ) 3 + 3 ( 810 ( x y ) 3 ) 81 0 3 ( x y ) 9 = 945 + 2430 ( x y ) 9 = 81 0 3 3375 ( x y ) 3 = 54 \begin{aligned} (\color{#3D99F6}{x+y})^3 & = \color{#20A900}{x^3+y^3} + 3(\color{#D61F06}{x^2y+xy^2}) \\ \color{#3D99F6}{\frac{810^3}{(xy)^{12}}} & = \color{#20A900}{\frac{945}{(xy)^3}} + 3 \left(\color{#D61F06}{\frac{810}{(xy)^3}}\right) \\ \color{#3D99F6}{\frac{810^3}{(xy)^{9}}} & = \color{#20A900}{945} + \color{#D61F06}{2430} \\ \Rightarrow (xy)^9 & = \frac{810^3}{3375} \\ \color{#69047E}{(xy)^3} & = \color{#69047E}{54} \end{aligned}

Now, we evaluate:

2 x 3 + ( x y ) 3 + 2 y 3 = 2 ( 945 54 ) + 54 = 35 + 54 = 89 \begin{aligned} 2\color{#20A900}{x^3} + \color{#69047E}{(xy)^3} + 2\color{#20A900}{y^3} & = 2\left(\color{#20A900}{\frac{945}{54}} \right) + \color{#69047E}{54} \\ & = \color{#20A900}{35} + \color{#69047E}{54} \\ & = \boxed{89} \end{aligned}

Brilliant !! Step by Step colorful solutions .... Upvoted

Syed Baqir - 5 years, 9 months ago
Johannes Reyes
Sep 12, 2015

This is my own solution:

Take α = x + y \alpha = x+y and β = x y \beta=xy , noting that x 3 + y 3 = α 3 3 α β x^3+y^3 = \alpha^3-3\alpha\beta .

The given equations become { α β 4 = 810 ( α β ) 3 3 α β 4 = 945. \begin{cases} \alpha\cdot\beta^4 = 810\\ (\alpha\beta)^3 - 3\alpha\beta^4= 945. \end{cases}

Substituting the first equation into the second, we get that

( α β ) 3 = 945 + 3 810 = 3375 α β = 15. (\alpha\beta)^3 = 945+3\cdot 810 = 3375\Longrightarrow \alpha\beta = 15.

Combining this with the first equation, we find that

β 3 = 810 / 15 = 54 \beta^3 = 810/15 = 54

and

α 3 = 3375 / 54 = 125 / 2. \alpha^3 = 3375/54 = 125/2.

The problem asks us to compute

2 α 3 + β 3 6 α β = 125 + 54 90 = 89. 2\alpha^3 + \beta^3 - 6\alpha\beta = 125 + 54 - 90 = 89.

Johanz Piedad
Sep 12, 2015

We can factor the equations given to us into x 4 y 4 ( x + y ) = 810 x^4y^4(x+y)=810

x 3 y 3 ( x 3 + y 3 ) = 945 x^3y^3(x^3+y^3)=945

The expression we want is the same as 2 ( x 3 + y 3 ) + ( x y ) 3 = 1890 x 3 y 3 + x 3 y 3 2(x^3+y^3)+(xy)^3=\dfrac{1890}{x^3y^3}+x^3y^3 . Thus we want the value of x 3 y 3 x^3y^3 . Cubing the first equation gives us

x 12 y 12 ( x 3 + y 3 + 3 x y ( x + y ) ) = 81 0 3 x 12 y 12 ( 945 x 3 y 3 + 3 810 x y x 4 y 4 ) = 81 0 3 x^{12}y^{12}(x^3+y^3+3xy(x+y))=810^3 \implies x^{12}y^{12}\left(\dfrac{945}{x^3y^3}+\dfrac{3\cdot810\cdot xy}{x^4y^4}\right)=810^3

( 945 + 3 810 ) x 9 y 9 = 81 0 3 x 3 y 3 = 810 15 = 54 \implies (945+3\cdot810)x^9y^9=810^3 \implies x^3y^3=\dfrac{810}{15}=54

Therefore, the answer is 1890 54 + 54 = 89 \dfrac{1890}{54}+54=\boxed{89}

Arturo Presa
Sep 14, 2015

From x 3 y 3 ( x 3 + y 3 ) = x 6 y 3 + x 3 y 6 = 945 , x^3y^3(x^3+y^3)=x^6y^3+x^3y^6=945, we obtain that x 3 y 3 [ ( x + y ) 3 3 x y ( x + y ) ] = 945 x^3y^3[(x+y)^3-3xy(x+y)]=945 . So x 3 y 3 ( x + y ) 3 = 945 + 3 x 4 y 4 ( x + y ) = 945 + 3 ( x 5 y 4 + x 4 y 5 ) = 945 + 3 810 = 3375 x^3y^3(x+y)^3=945+3x^4y^4(x+y)=945+3(x^5y^4+x^4y^5)=945+3*810=3375 . Taking cube root of both sides we get that x y ( x + y ) = 15 xy(x+y)=15 . Dividing x 4 y 4 ( x + y ) = x 5 y 4 + x 4 y 5 = 810 x^4y^4(x+y)=x^5y^4+x^4y^5=810 side by side by x y ( x + y ) = 15 xy(x+y)=15 we obtain x 3 y 3 = 54 ( ) x^3y^3=54\:\:\: (*)

Now, dividing x 3 y 3 ( x 3 + y 3 ) = x 6 y 3 + x 3 y 6 = 945 x^3y^3(x^3+y^3)=x^6y^3+x^3y^6=945 side by side by x 3 y 3 = 54 x^3y^3=54 we obtain x 3 + y 3 = 945 54 = 35 2 ( ) x^3+y^3=\frac{945}{54}=\frac{35}{2}\:\:\:(**) Therefore, using ( ) (*) and ( ) (**) , 2 x 3 + ( x y ) 3 + 2 y 3 = 2 ( x 3 + y 3 ) + ( x y ) 3 = 2 ( 35 2 ) + 54 = 89. 2x^3+(xy)^3+2y^3=2(x^3+y^3)+(xy)^3=2(\frac{35}{2})+54=89.

Nikola Djuric
Dec 14, 2015

Divide it 945/810=(x²-xy+y²)/(xy)=7/6 So 6x²-6xy+6y²=7xy i.e. 6x²-13xy+6y²=0 and divide by y² and replace x/y=t so we'll get 6t²-13t+6=0 i.e. t^(±1)=3/2 So x/y =3/2 ( for 2/3 is similiar ) 2x=3y,so from 32x⁴y⁴(x+y)=32×810 We get (2x)⁴y⁴(2x+2y)=32×810 i.e. (3y)⁴y⁴(3y+2y)=32×81×5×2 so y^9=64=2^6 so y³=4,so (2/3x)³=4, i.e. x³=27/2 so now is our answer 2×4+54+27=89

William Isoroku
Sep 12, 2015

basically just factor and equate and you get x 3 y 3 = 54 x^3y^3=54 and what we're trying to find is 2 ( 945 x 3 y 3 ) + x 3 y 3 2(\frac{945}{x^3y^3})+x^3y^3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...