Find the area...

Geometry Level 3

The diagram above shows a rectangle A B C D ABCD such that E E is the midpoint of B C BC and F F is the midpoint of C D CD . The diagonal B D BD intersects A F AF and A E AE at Q Q and T T respectively. The vertical line P S PS passing through Q Q is perpendicular to A B AB and intersects A E AE at R R . It is also given that A B = C D = 12 AB=CD=12 and B C = A D = 6 BC=AD=6 .

Find the area of the triangle Q R T \triangle QRT .


This is a part of the Set .


The answer is 6.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The area of the rectangle is 6*12=72. Areas of triangles FDA and EAB each is 72 4 . So the area of F A E C F = 72 72 4 72 4 = 72 2 = 36. S o a r e a o f F A E = a r e a o f F A E C F a r e a o f C F E . = 36 1 2 3 6 = 27. Property of a rectangle Q and T trisects the diagonal DB. Q T = 1 3 D B . i n C D B , F E = 1 2 D B . Q T F E = 2 3 . I n T D A , Q i s m i d p o i n t , Q R D A . R i s m i d p o i n t o f A T . A r e a s Q R T = 1 2 Q A T \text{The area of the rectangle is 6*12=72.}\\ \text{Areas of triangles FDA and EAB each is }\dfrac{72} 4. \\ \text{So the area of }FAECF=72-\dfrac{72} 4-\dfrac{72} 4=\dfrac{72} 2=36.\\ So ~ area ~ of~\color{#D61F06}{\triangle ~FAE}=~ area ~ of ~ FAECF~-~area ~ of ~\triangle~ CFE.\\ =36~- ~\dfrac 1 2 *3*6=\color{#D61F06}{27}.\\ \text{Property of a rectangle Q and T trisects the diagonal DB.}\\ \therefore QT=\dfrac 1 3 *DB.\\ \therefore ~in~\triangle~CDB,~~~FE=\dfrac 1 2 *DB.\\ \therefore ~\color{#EC7300}{\dfrac{QT}{FE}=\dfrac 2 3 .}\\ In ~ \triangle~TDA, ~Q~is~midpoint, ~ QR ||DA.\\ \therefore~ R ~is~ midpoint~of~ AT.\\ Areas~\triangle~ QRT~=\dfrac 1 2 *\triangle~QAT \\ = 1 2 ( Q T F E ) 2 F A E = 1 2 ( 2 3 ) 2 27 = 6 =\dfrac 1 2 * \left ( \color{#EC7300}{ \dfrac{QT}{FE} }\right )^2* \color{#D61F06}{\triangle ~FAE}\\ =\dfrac 1 2 *\left(\dfrac2 3 \right)^2*27\\ = \Large \color{#3D99F6}{6} P r o o f o f T r i s e c t i o n Proof~~of~~Trisection Draw the other diagonal CA to bisect diagonal DB at at O. Let G be the midpoint of AB. Draw GC i n C A B , B O , C G , A E , a r e m e d i a n s c o i n c i d e n t a t T . S o B T = 2 3 B O = 1 3 B D . T t r i s e c t s t h e d i a g o n a l . \text{Draw the other diagonal CA to bisect diagonal DB at at O. }\\ \text{Let G be the midpoint of AB. Draw GC}\\ \implies~in~\triangle ~CAB,~BO,~CG,~AE, ~are ~medians ~co-incident ~at~T.\\ So~BT=\dfrac 2 3 * BO=\dfrac 1 3 * BD.\\ \implies~T trisects~ the ~diagonal.

Rab Gani
May 23, 2017

Use coordinates geometry, with A(0,0).The equation of lines AF : y=x, BD:y=-0.5x+6,AE:y=0.25x, Then we will find the coordinates of intersection points Q(4,4),R(4,1), and T(8,2). The area of the triangle QRT = (1/2)(4)(3) = 6.

Easiest approach if you asked me!

Peter van der Linden - 1 year, 2 months ago
Anirban Karan
May 23, 2017

E T B \triangle ETB and A T D \triangle ATD are similar trianlges. So, E T A T = B T D T = E B A D = 1 2 \displaystyle\frac{ET}{AT}=\frac{BT}{DT}=\frac{EB}{AD}=\frac{1}{2}

a = E T = A E 3 = 1 2 2 + 3 2 3 = 17 \displaystyle \implies a=ET=\frac{AE}{3}=\frac{\sqrt{12^2+3^2}}{3}=\sqrt{17} ,

b = B T = B D 3 = 1 2 2 + 6 2 3 = 2 5 \displaystyle b=BT=\frac{BD}{3}=\frac{\sqrt{12^2+6^2}}{3}=2\sqrt{5}

and c = E B = 3 c=EB=3

E T B = s ( s a ) ( s b ) ( s c ) [ where s = a + b + c 2 ] = 1 4 2 a 2 b 2 + 2 b 2 c 2 + 2 c 2 a 2 a 4 b 4 c 4 = 1 4 576 = 6 \begin{aligned}\triangle ETB&=\sqrt{s(s-a)(s-b)(s-c)}\quad\quad \color{#3D99F6} \Big[\text{where } s=\frac{a+b+c}{2}\Big]\\ &=\frac{1}{4}\sqrt{2a^2 b^2+2b^2 c^2+2c^2 a^2 -a^4-b^4-c^4}\\ &=\frac{1}{4}\sqrt{576}=6\end{aligned}

Now, A Q B \triangle AQB and F Q D \triangle FQD are also similar triangles.

D Q B Q = D F A B = 1 2 T Q = B T = D Q = B D 3 \implies \displaystyle\frac{DQ}{BQ}=\frac{DF}{AB}=\frac{1}{2} \quad \implies TQ=BT=DQ=\frac{BD}{3}

But P S PS and C B CB are parallel straight lines. So, T Q R = T B E \angle TQR=\angle TBE and T R Q = T E B \angle TRQ=\angle TEB .

Then, E T B Q R T Q R T = 6 \triangle ETB \cong \triangle QRT \quad \implies \boxed{\triangle QRT=6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...