Find the area of the blue zone

Geometry Level 3

Shown in the above figure is a regular octagon (colored red) of side length 6. Circular arcs of radius 3 are drawn on each vertex. Find the area of the blue zone.

13.5 π + 72 2 2 2 -13.5\pi+\dfrac{72\sqrt{2}}{2-\sqrt{2}} 36 π + 72 2 2 2 36\pi+\dfrac{72\sqrt{2}}{2-\sqrt{2}} 72 2 2 2 + 9 π \dfrac{72\sqrt{2}}{2-\sqrt{2}}+9\pi 36 2 + 22.5 π 36\sqrt{2}+22.5\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

area of yellow zone = 4 ( 135 360 ) ( π ) ( 3 2 ) = 13.5 π \text{area of yellow zone}=4\left(\dfrac{135}{360}\right)(\pi)(3^2)=13.5\pi

By cosine law, we have

x 2 = 2 x 2 2 x 2 cos 45 x^2=2x^2-2x^2\cos 45

36 = x 2 [ 2 2 ( 2 2 ) ] 36=x^2\left[2-2\left(\dfrac{\sqrt{2}}{2}\right)\right]

x 2 = 36 2 2 x^2=\dfrac{36}{2-\sqrt{2}}

area of octagon=area of 8 isosceles triangles = 8 ( 1 2 ) ( x 2 ) ( sin 45 ) = 4 ( 36 2 2 ) ( 2 2 ) = 72 2 2 2 \text{area of octagon=area of 8 isosceles triangles}=8\left(\dfrac{1}{2}\right)(x^2)(\sin 45)=4\left(\dfrac{36}{2-\sqrt{2}}\right)\left(\dfrac{\sqrt{2}}{2}\right)=\dfrac{72\sqrt{2}}{2-\sqrt{2}}

area of blue zone inside=area of octagon - area of yellow zone = 72 2 2 2 13.5 π \text{area of blue zone inside=area of octagon - area of yellow zone}=\dfrac{72\sqrt{2}}{2-\sqrt{2}}-13.5\pi

area of blue zone outside = 4 ( 225 360 ) ( π ) ( 3 2 ) = 22.5 π \text{area of blue zone outside}=4\left(\dfrac{225}{360}\right)(\pi)(3^2)=22.5\pi

area of blue zone=area of blue zone inside + area of blue zone outside = 72 2 2 2 2 + 9 π \text{area of blue zone=area of blue zone inside + area of blue zone outside}=\dfrac{72\sqrt{2}}{2-2\sqrt{2}}+9\pi

Formulas used:

A = θ 360 π r 2 A=\dfrac{\theta}{360}\pi r^2 \implies area of a circular sector \text{area of a circular sector}

A = 1 2 a b sin C A=\dfrac{1}{2}ab \sin C \implies area of a triangle \text{area of a triangle}

Rab Gani
Nov 2, 2017

The blue area = the octagon area – 4(3π/8)3^2 + 4(5π/8)3^2 . The area of octagon = 8(r^2)sin(45). The radius r can be found from sin rule: r/sin(135/2) = 6/sin 45, r^2 = 36(1 + 1/2√2). The blue area = the octagon area – 4(3π/8)32 + 4(5π/8)32 = (72√2 + 72) + 9π

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...