Find the area of the enclosed region

Calculus Level 3

If the area outside the circle r ( θ ) = 2 r(\theta)= 2 and inside the circle r ( θ ) = 4 sin θ r(\theta) = 4 \sin \theta can be expressed as a π b + c b \dfrac{a \pi}{b} + c\sqrt{b} , then find a + b + c a + b + c .

See the figure below:

The region is described by π 6 θ 5 π 6 \frac \pi 6 \le \theta \le \frac {5\pi}6 and 2 r 4 sin θ 2 \le r \le 4 \sin \theta .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 26, 2017

By Calculus:

The shaded area is given by:

A = 1 2 π 6 5 π 6 ( r 2 ( θ ) 2 2 ) d θ = 1 2 π 6 5 π 6 ( 16 sin 2 θ 4 ) d θ = π 6 5 π 6 ( 4 ( 1 cos 2 θ ) 2 ) d θ = π 6 5 π 6 ( 2 4 cos 2 θ ) d θ = [ 2 θ 2 sin 2 θ ] π 6 5 π 6 = 5 π 3 π 3 2 ( 3 2 3 2 ) = 4 π 3 + 2 3 \begin{aligned} A & = \frac 12 \int_\frac \pi 6^\frac {5\pi}6 \left(r^2(\theta) - 2^2\right) \ d\theta \\ & = \frac 12 \int_\frac \pi 6^\frac {5\pi}6 \left(16 \sin^2 \theta - 4\right) \ d\theta \\ & = \int_\frac \pi 6^\frac {5\pi}6 \left(4(1 - \cos 2\theta) - 2 \right) \ d\theta \\ & = \int_\frac \pi 6^\frac {5\pi}6 \left(2 - 4\cos 2\theta \right) \ d\theta \\ & = \bigg[ 2 \theta - 2\sin 2 \theta \bigg]_\frac \pi 6^\frac {5\pi}6 \\ & = \frac {5\pi}3 - \frac \pi 3 - 2\left(-\frac {\sqrt 3}2 - -\frac {\sqrt 3}2 \right) \\ & = \frac {4\pi}3 + 2\sqrt 3 \end{aligned}

a + b + c = 4 + 3 + 2 = 9 \implies a+b+c = 4+3+2 = \boxed{9}


By Geometry:

In rectangular coordinate system, we have:

{ x = r cos θ = 4 sin θ cos θ = 2 sin 2 θ y = r sin θ = 4 sin 2 θ = 2 2 cos 2 θ \begin{cases} x = r\cos \theta = 4\sin \theta \cos \theta = 2\sin 2\theta \\ y = r\sin \theta = 4\sin^2 \theta = 2-2\cos 2 \theta \end{cases}

x 2 + ( y 2 ) 2 = 4 \implies x^2 + (y-2)^2 = 4 , which is a circle centered at ( 0 , 2 ) (0,2) and radius 2.

We note that the segment in the overlap extends an angle of 12 0 120^\circ with the upper circle. Therefore, the area of the shaded region

A = π R 2 2 ( 1 3 π R 2 2 × 1 2 × 1 2 × 3 2 R 2 ) where R = 2 = 4 π 8 3 π + 2 3 = 4 π 3 + 2 3 \begin{aligned} A & = \pi R^2 - 2\left(\frac 13 \pi R^2 - 2\times \frac 12 \times \frac 12 \times \frac {\sqrt 3}2R^2 \right) & \small \color{#3D99F6} \text{where }R=2 \\ & = 4 \pi - \frac 83 \pi + 2 \sqrt 3 \\ & = \frac {4\pi}3 + 2\sqrt 3 \end{aligned}

a + b + c = 4 + 3 + 2 = 9 \implies a+b+c = 4+3+2 = \boxed{9}

Slight mistake on the last but one line: It should read 4pi/3 + 2*sqrt(3) instead of 4pi/3 + sqrt(3)

Vijay Simha - 3 years, 10 months ago

Log in to reply

Thanks. Vijay.

Chew-Seong Cheong - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...