Find the side length of the equilateral triangle

Geometry Level 3

Shown below is an equilateral A B C \triangle ABC of side length s s . A point P P is inside the triangle such that A P = 1 AP=1 , B P = 3 BP=\sqrt{3} and C P = 2 CP=2 . Find s s .

7 \sqrt{7} 2 2 2\sqrt{2} 8 3 \dfrac{8}{3} 5 5 \sqrt{5\sqrt{5}} 1 + 2 1+\sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Begin by rotating the hole figure by 6 0 60^\circ clockwise, about C C , as shown below.

C P = C P = 2 CP=C{P}'=2 and P C P = 60 \angle PC{P}'=60{}^\circ , hence P C P \triangle PC{P}' is equilateral.
Thus, P P = 2 P{P}'=2 . Consequently, A P P \triangle AP{P}' is a 1 1 - 3 \sqrt{3} - 2 2 triangle, i.e. a 30 30{}^\circ - 60 60{}^\circ - 90 90{}^\circ right triangle, with A P P = 30 \angle A{P}'P=30{}^\circ .

Now, A P C = A P P + P P C = 30 + 60 = 90 \angle A{P}'C=\angle A{P}'P+\angle P{P}'C=30{}^\circ +60{}^\circ =90{}^\circ By Pytghagorean theorem on A P C \triangle A{P}'C , A C 2 = A P 2 + P C 2 s 2 = 3 2 + 2 2 = 7 s = 7 A{{C}^{2}}=A{{{P}'}^{2}}+{P}'{{C}^{2}}\Rightarrow {{s}^{2}}={{\sqrt{3}}^{2}}+{{2}^{2}}=7\Rightarrow s=\boxed{\sqrt{7}}

Marvin Kalngan
Aug 21, 2020

Begin by rotating A B C \triangle ABC by 6 0 60^\circ about A A , such that in A B C \triangle A'B'C' , B = C B'=C . We see that t r i a n g l e A P P triangle APP' is equilateral triangle with side length 1 1 , meaning that A P P = 6 0 \angle APP'=60^\circ . We also see that C P P \triangle CPP' is a 3 0 6 0 9 0 30^\circ-60^\circ-90^\circ right triangle, meaning that C P P = 6 0 \angle CPP'=60^\circ . Thus, by adding the two together, we see that A P C = 12 0 \angle APC=120^\circ . We can now use the law of cosines as following:

s 2 = ( A P ) 2 + ( C P ) 2 2 ( A P ) ( C P ) ( cos A P C ) s^2 = (AP)^2 + (CP)^2 - 2(AP)(CP)(\cos \angle APC)

s 2 = 1 + 4 2 ( 1 ) ( 2 ) ( 1 2 ) s^2=1+4-2(1)(2)\left(\frac{-1}{2}\right)

s 2 = 5 4 ( 1 2 ) s^2=5-4\left(\frac{-1}{2}\right)

s = 7 \large{\color{#3D99F6}\boxed{s=\sqrt{7}}} answer \color{#EC7300}\text{answer}

Nice solution! One note: The title of the problem asks for the area of the triangle, but finaly the question is about its side :)

Thanos Petropoulos - 9 months, 3 weeks ago

Log in to reply

@Thanos Petropoulos Thank you for checking my mistake. I edited the title for clarity.

Marvin Kalngan - 9 months, 3 weeks ago

Log in to reply

@Marvin Kalngan You wellcome! It is a very nice problem among those that can be solved by rotation.

Thanos Petropoulos - 9 months, 3 weeks ago
Chew-Seong Cheong
Aug 22, 2020

Let the centroid of A B C \triangle ABC be O ( 0 , 0 ) O(0,0) , the origin of the x y xy -plane. Then A ( 0 , s 3 ) A(0, \frac s {\sqrt 3} ) , B ( s 2 , s 2 3 ) B(-\frac s2, - \frac s{2 \sqrt 3}) , and C ( s 2 , s 2 3 ) C(\frac s2, - \frac s{2 \sqrt 3}) . Let P ( x , y ) P(x, y) . Then we have

{ x 2 + ( y s 3 ) 2 = 1 . . . ( 1 ) ( x + s 2 ) 2 + ( y + s 2 3 ) 2 = 3 . . . ( 2 ) ( x s 2 ) 2 + ( y + s 2 3 ) 2 = 4 . . . ( 3 ) \begin {cases} x^2 +(y-\frac s{\sqrt 3})^2 = 1 &... (1) \\ (x+\frac s 2)^2 + (y+\frac s{2 \sqrt 3})^2 = 3 &... (2) \\ (x-\frac s 2)^2 + (y+\frac s{2 \sqrt 3})^2 = 4 &... (3) \end {cases}

From ( 3 ) ( 2 ) : 2 s x = 1 x = 1 2 s (3)-(2): \ - 2sx=1 \implies x =-\frac 1{2 s} .

From ( 2 ) ( 1 ) (2)-(1) :

s x + s 2 4 + s y 3 + s 2 12 + 2 s y 3 s 2 3 = 2 1 2 + 3 s y = 2 y = 5 2 3 s \begin{aligned} sx +\frac {s^2} 4+\frac {sy} {\sqrt 3}+\frac {s^2} {1 2}+ \frac {2sy}{\sqrt 3}-\frac {s^2} 3&=2 \\ - \frac 12 +\sqrt 3sy & =2 \\ \implies y&= \frac 5{2 \sqrt 3s} \end{aligned}

Substitute x x and y y in ( 1 ) (1) :

1 4 s 2 + ( 5 2 3 s s 3 ) 2 = 1 1 4 s 2 + 25 12 s 2 5 3 + s 2 3 = 1 7 3 s 2 8 3 + s 2 3 = 0 s 4 8 s 2 + 7 = 0 ( s 2 1 ) ( s 2 7 ) = 0 Since s > 1 s = 7 \begin{aligned} \frac 1{4s^2} +\left (\frac 5{2 \sqrt 3s}-\frac s{\sqrt 3} \right) ^2 & =1 \\ \frac 1{4s^2} +\frac {2 5}{1 2s^2}-\frac 53+\frac {s^2}3 & =1 \\ \frac 7{3s^2} - \frac 83+\frac {s^2} 3&=0 \\ s^4 - 8s^2 +7&=0 \\ (s^2 - 1)(s^2 - 7)&=0 & \small \blue {\text {Since } s >1} \\ \implies s & = \boxed{ \sqrt 7} \end{aligned}

Let P C A = α , P C B = 60 ° α \angle {PCA}=α,\angle {PCB}=60\degree-α

Then

cos α = s 2 + 3 4 s \cos α=\dfrac {s^2+3}{4s}

cos ( 60 ° α ) = s 2 + 1 4 s \cos (60\degree-α)=\dfrac {s^2+1}{4s}

Solving we get

sin α = s 2 1 4 3 s \sin α=\dfrac {s^2-1}{4\sqrt 3s}

So, cos 2 α + sin 2 α = 1 ( s 2 + 3 ) 2 16 s 2 + ( s 2 1 ) 2 48 s 2 = 1 \cos^2 α+\sin^2 α=1\implies \dfrac {(s^2+3)^2}{16s^2}+\dfrac {(s^2-1)^2}{48s^2}=1

s 4 8 s 2 + 7 = 0 s = 1 , 7 \implies s^4-8s^2+7=0\implies s=1,\sqrt 7

Obviously s s can't be 1 1 , since then P A + A C = 1 + 1 = 2 = P C |\overline {PA}|+|\overline {AC}|=1+1=2=|\overline {PC}|

Therefore s = 7 s=\boxed {\sqrt 7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...