Find the area of the triangle

Geometry Level pending

Find the area of the triangle shown above.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note that ( 5 2 ) 2 + ( 6 2 ) 2 = 50 + 72 = 122 = ( 122 ) 2 (5\sqrt{2})^{2} + (6\sqrt{2})^{2} = 50 + 72 = 122 = (\sqrt{122})^{2} , so the given triangle is right-angled with legs length 5 2 5\sqrt{2} and 6 2 6\sqrt{2} .

The area of the triangle is therefore 1 2 ( 5 2 ) ( 6 2 ) = 30 \dfrac{1}{2}(5\sqrt{2})(6\sqrt{2}) = \boxed{30} .

Relevant wiki: Heron's Formula

Assuming that we don't know that it is right triangle, use Heron's Formula .

Let a = 5 2 , b = 6 2 + 122 a=5\sqrt{2},b=6\sqrt{2}+\sqrt{122} .

s = 5 2 + 6 2 + 122 2 = 11 2 + 122 2 s=\dfrac{5\sqrt{2}+6\sqrt{2}+\sqrt{122}}{2}=\dfrac{11\sqrt{2}+\sqrt{122}}{2}

s a = 11 2 + 122 2 5 2 = 11 2 + 122 10 2 2 = 2 + 122 2 s-a=\dfrac{11\sqrt{2}+\sqrt{122}}{2}-5\sqrt{2}=\dfrac{{11\sqrt{2}+\sqrt{122}}-10\sqrt{2}}{2}=\dfrac{\sqrt{2}+\sqrt{122}}{2}

s b = 11 2 + 122 2 6 2 = 11 2 + 122 12 2 2 = 122 2 2 s-b=\dfrac{11\sqrt{2}+\sqrt{122}}{2}-6\sqrt{2}=\dfrac{11\sqrt{2}+\sqrt{122}-12\sqrt{2}}{2}=\dfrac{\sqrt{122}-\sqrt{2}}{2}

s c = 11 2 + 122 2 122 = 11 2 + 122 2 122 2 = 11 2 122 2 s-c=\dfrac{11\sqrt{2}+\sqrt{122}}{2}-\sqrt{122}=\dfrac{11\sqrt{2}+\sqrt{122}-2\sqrt{122}}{2}=\dfrac{11\sqrt{2}-\sqrt{122}}{2}

s ( s a ) = ( 11 2 + 122 2 ) ( 2 + 122 2 ) = 11 ( 2 ) + 11 2 ( 122 ) + 2 ( 122 ) + 122 4 = 144 + 24 61 4 s(s-a)=\left(\dfrac{11\sqrt{2}+\sqrt{122}}{2}\right)\left(\dfrac{\sqrt{2}+\sqrt{122}}{2}\right)=\dfrac{11(2)+11\sqrt{2(122)}+\sqrt{2(122)}+122}{4}=\dfrac{144+24\sqrt{61}}{4}

( s b ) ( s c ) = ( 122 2 2 ) ( 11 2 122 2 ) = 11 244 122 22 + 244 4 = 24 61 144 4 (s-b)(s-c)= \left(\dfrac{\sqrt{122}-\sqrt{2}}{2}\right)\left(\dfrac{11\sqrt{2}-\sqrt{122}}{2}\right)=\dfrac{11\sqrt{244}-122-22+\sqrt{244}}{4}=\dfrac{24\sqrt{61}-144}{4}

s ( s a ) ( s b ) ( s c ) = ( 144 + 24 61 4 ) ( 24 61 144 4 ) = 3456 61 20736 + 35136 3456 61 16 = 900 s(s-a)(s-b)(s-c)=\left(\dfrac{144+24\sqrt{61}}{4}\right)\left(\dfrac{24\sqrt{61}-144}{4}\right)=\dfrac{3456\sqrt{61}-20736+35136-3456\sqrt{61}}{16}=900

A = s ( s a ) ( s b ) ( s c ) = 900 = 30 A=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{900}=\color{#D61F06}\boxed{30}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...