Find the area of the triangle shown above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Heron's Formula
Assuming that we don't know that it is right triangle, use Heron's Formula .
Let a = 5 2 , b = 6 2 + 1 2 2 .
s = 2 5 2 + 6 2 + 1 2 2 = 2 1 1 2 + 1 2 2
s − a = 2 1 1 2 + 1 2 2 − 5 2 = 2 1 1 2 + 1 2 2 − 1 0 2 = 2 2 + 1 2 2
s − b = 2 1 1 2 + 1 2 2 − 6 2 = 2 1 1 2 + 1 2 2 − 1 2 2 = 2 1 2 2 − 2
s − c = 2 1 1 2 + 1 2 2 − 1 2 2 = 2 1 1 2 + 1 2 2 − 2 1 2 2 = 2 1 1 2 − 1 2 2
s ( s − a ) = ( 2 1 1 2 + 1 2 2 ) ( 2 2 + 1 2 2 ) = 4 1 1 ( 2 ) + 1 1 2 ( 1 2 2 ) + 2 ( 1 2 2 ) + 1 2 2 = 4 1 4 4 + 2 4 6 1
( s − b ) ( s − c ) = ( 2 1 2 2 − 2 ) ( 2 1 1 2 − 1 2 2 ) = 4 1 1 2 4 4 − 1 2 2 − 2 2 + 2 4 4 = 4 2 4 6 1 − 1 4 4
s ( s − a ) ( s − b ) ( s − c ) = ( 4 1 4 4 + 2 4 6 1 ) ( 4 2 4 6 1 − 1 4 4 ) = 1 6 3 4 5 6 6 1 − 2 0 7 3 6 + 3 5 1 3 6 − 3 4 5 6 6 1 = 9 0 0
A = s ( s − a ) ( s − b ) ( s − c ) = 9 0 0 = 3 0
Problem Loading...
Note Loading...
Set Loading...
Note that ( 5 2 ) 2 + ( 6 2 ) 2 = 5 0 + 7 2 = 1 2 2 = ( 1 2 2 ) 2 , so the given triangle is right-angled with legs length 5 2 and 6 2 .
The area of the triangle is therefore 2 1 ( 5 2 ) ( 6 2 ) = 3 0 .