Find the coefficient

Algebra Level 5

1 x + x 2 x 3 + + x 16 x 17 \large 1-x+x^2-x^3+\ldots+x^{16}-x^{17} The polynomial above may be written in the form a 0 + a 1 y + a 2 y 2 + . . . + a 16 y 16 + a 17 y 17 a_0 + a_1y + a_2y^2+...+a_{16}y^{16}+a_{17}y^{17} where y = x + 1 y=x+1 and a i s a_i's are constants. Find a 2 a_2 .


This is the part of my set Polynomialism


The answer is 816.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ravi Dwivedi
Jul 12, 2015

f ( x ) = 1 x + x 2 x 3 + . . . + x 16 x 17 f(x)=1-x+x^2-x^3+...+x^{16}-x^{17} x f ( x ) = x x 2 + x 3 . . . x 18 xf(x)=x-x^2+x^3-...-x^{18} Adding these two we get ( 1 + x ) f ( x ) = 1 x 18 (1+x)f(x)= 1-x^{18} f ( x ) = f ( y 1 ) = 1 ( y 1 ) 18 1 + ( y 1 ) = 1 ( y 1 ) 18 y f(x)=f(y-1)=\frac{1-(y-1)^{18}}{1+(y-1)}\\ =\frac{1-(y-1)^{18}}{y} a 2 a_2 is equal to coefficient of y 3 y^3 in the expansion of 1 ( y 1 ) 18 1-(y-1)^{18} i,e, a 2 = ( 18 3 ) = 816 a_2={18 \choose 3}=\boxed{816}

Moderator note:

Good observation with the "generating functions" manipulation.

Arturo Presa
Dec 4, 2015

Let f ( x ) = 1 x + x 2 + . . . + x 16 x 17 f(x)=1-x+x^2+...+x^{16}-x^{17} . This expression is the sum of the first 18 terms of a geometric sequence whose first term is 1 and common ratio x . -x. Therefore, f ( x ) = 1 ( x ) 18 1 ( x ) = 1 x 18 1 + x for x 1 ( ) f(x)=\frac{1-(-x)^{18}}{1-(-x)}=\frac{1-x^{18}}{1+x}\:\:\:\:\:\:\text{for} \:\:x\neq -1\:\:\:(*) In the other hand, if f ( x ) = a 0 + a 1 ( x + 1 ) + a 2 ( x + 1 ) 2 + . . . + a 16 ( x + 1 ) 16 + a 17 ( x + 1 ) 17 , f(x)=a_0 + a_1(x+1) + a_2(x+1)^2+...+a_{16}(x+1)^{16}+a_{17}(x+1)^{17}, then differentiating both sides twice and evaluating at x = 1 , x=-1, we get f ( 1 ) = 2 a 2 . f ''(-1)=2a_2. Now using ( ) (*) and L'hopital Rule three times, we get that 2 a 2 = lim x 1 d 2 d x 2 1 x 18 1 + x = 1632. 2a_2=\lim_{x \to -1}{\frac{d^2}{dx^2}\frac{1-x^{18}}{1+x}}=1632. Then a 2 = 816. a_2=816.

The last part, where we find the second derivative of the function 1 x 18 1 + x \frac{1-x^{18}}{1+x} and apply L'hopital can be a tedious procedure. So another way of finding the value of f ( 1 ) f ''(-1) is the following. We can differentiate the equality f ( x ) = n = 0 n = 17 ( 1 ) n x n f(x)=\sum_{n=0}^{n=17}(-1)^nx^{n} twice, so we get f ( x ) = n = 2 17 ( 1 ) n n ( n 1 ) x n 2 . f ''(x)=\sum_{n=2}^{17}(-1)^nn(n-1)x^{n-2}. Evaluating at x = 1 x=-1 , f ( 1 ) = n = 2 17 n ( n 1 ) = n = 1 17 n 2 n = 1 17 n = 17 ( 17 + 1 ) ( 2 ( 17 ) + 1 ) 6 17 ( 17 + 1 ) 2 = 1632. f ''(-1)=\sum_{n=2}^{17}n(n-1)=\sum_{n=1}^{17}n^2-\sum_{n=1}^{17}n=\frac{17(17+1)(2(17)+1)}{6}-\frac{17(17+1)}{2}=1632.

This is beautifulllll!!!!

Pi Han Goh - 4 years, 9 months ago

I did exactly the same way as the second part of your solution sir..

Ankit Kumar Jain - 4 years, 1 month ago
Gary Hu
Jul 21, 2015

x = y 1 x=y-1 f ( x ) = 1 x + x 2 x 3 + . . . + x 16 x 17 f(x)=1-x+x^2-x^3 +...+x^{16}-x^{17} = 1 ( y 1 ) + ( y 1 ) 2 ( y 1 ) 3 . . . + ( y 1 ) 16 ( y 1 ) 17 =1-(y-1)+(y-1)^2-(y-1)^3...+(y-1)^{16}-(y-1)^{17}

Note that the coefficient of the y 2 y^2 term in the expansion of each power of ( y 1 ) (y-1) is equal to ( 1 ) n ( n 2 ) (-1)^n{n \choose 2} , where n n is the power of ( y 1 ) (y-1) . And since the sign of each odd power of ( y 1 ) (y-1) is negative, all y 2 y^2 terms in f ( y 1 ) f(y-1) are positive, and a 2 a_2 is their sum. Thus,

a 2 = n = 1 17 ( n 2 ) = ( 17 ) ( 16 ) + ( 16 ) ( 15 ) + ( 15 ) ( 14 ) + . . . + ( 3 ) ( 2 ) + ( 2 ) ( 1 ) ( 2 ) ( 1 ) a_2=\sum_{n=1}^{17}{n \choose 2}=\frac{(17)(16)+(16)(15)+(15)(14)+...+(3)(2)+(2)(1)}{(2)(1)} = ( 16 ) ( 17 + 15 ) + ( 14 ) ( 15 + 13 ) + . . . + ( 2 ) ( 3 + 1 ) 2 =\frac{(16)(17+15)+(14)(15+13)+...+(2)(3+1)}{2} = 1 6 2 + 1 4 2 + . . . + 2 2 = 4 n = 1 8 n 2 = 4 ( 8 ) ( 9 ) ( 17 ) 6 = 816 =16^2+14^2+...+2^2=4\sum_{n=1}^8{n^2}=4\frac{(8)(9)(17)}{6}=\boxed{816}

Moderator note:

Yes, this would be the "brute force" approach to evaluating the coefficients.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...