Find the coefficients of the equivalent polynomial

Algebra Level pending

P ( x , y ) = 5 x 3 + 5 y 3 + 4 x 2 y + 4 x y 2 + 3 x 2 + 3 y 2 + 2 x y + x + y P(x,y)=5x^3+5y^3+4x^2y+4xy^2+3x^2+3y^2+2xy+x+y

r = x + y r=x+y

s = x y s=xy

Q ( r , s ) = q 1 r 3 + q 2 r 2 + q 3 r s + q 4 r + q 5 s Q(r,s)=q_1r^3+q_2r^2+q_3rs+q_4r+q_5s

If P ( x , y ) = Q ( r , s ) P(x,y)=Q(r,s) , then q 1 + q 2 + q 3 + q 4 + q 5 = ? q_1+q_2+q_3+q_4+q_5=\ ?


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andy Hayes
Apr 1, 2016

This problem is an application of the fundamental theorem of symmetric polynomials.

By expanding Q ( r , s ) Q(r,s) in terms of x x and y y , we obtain P ( x , y ) = q 1 ( x 3 + y 3 + 3 x 2 y + 3 x y 2 ) + q 2 ( x 2 + y 2 + 2 x y ) + q 3 ( x 2 y + x y 2 ) + q 4 ( x + y ) + q 5 ( x y ) P(x,y)=q_1(x^3+y^3+3x^2y+3xy^2)+q_2(x^2+y^2+2xy)+q_3(x^2y+xy^2)+q_4(x+y)+q_5(xy)

This gives us a system of equations that we can solve for q 1 q_1 , q 2 q_2 , q 3 q_3 , q 4 q_4 , and q 5 q_5 :

q 1 = 5 q_1=5

q 2 = 3 q_2=3

3 q 1 + q 3 = 4 3q_1+q_3=4

q 4 = 1 q_4=1

2 q 2 + q 5 = 2 2q_2+q_5=2

Solving this system equations yields q 3 = 11 q_3=-11 and q 5 = 4 q_5=-4 . Thus, q 1 + q 2 + q 3 + q 4 + q 5 = 6 q_1+q_2+q_3+q_4+q_5=\boxed{-6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...