Find the derivative of the following

Calculus Level 3

If x k y h = ( x + y ) k + h x^k y^h = (x+y)^{k+h} , where k k and h h are constants, find d y d x \dfrac {dy}{dx} .

x k 1 + y h 1 x^{k-1} + y^{h-1} y x \frac yx x y x + y \frac {xy}{x+y} x y \frac xy

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 30, 2019

x k y h = ( x + y ) k + h Differentiate both sides w.r.t. x k x k 1 y h + h x k y h 1 d y d x = ( k + h ) ( x + y ) k + h 1 ( 1 + d y d x ) Note that x k y h = ( x + y ) k + h k x x k y h + h y x k y h d y d x = k + h x + y x k y h ( 1 + d y d x ) Divide both sides by x k y h k x + h y d y d x = k + h x + y ( 1 + d y d x ) Rearrange ( h y k + h x + y ) d y d x = k + h x + y k x ( h x k y y ( x + y ) ) d y d x = h x k y x ( x + y ) d y d x = y x \begin{aligned} x^ky^h & = (x+y)^{k+h} & \small \blue{\text{Differentiate both sides w.r.t. }x} \\ kx^{k-1}y^h + hx^ky^{h-1}\frac {dy}{dx} & = (k+h)\blue{(x+y)^{k+h-1}} \left(1+\frac {dy}{dx}\right) & \small \blue{\text{Note that }x^ky^h = (x+y)^{k+h}} \\ \frac kx x^ky^h + \frac hy x^ky^h\frac {dy}{dx} & = \frac {k+h}{\blue{x+y}}\blue{x^ky^h} \left(1+\frac {dy}{dx}\right) & \small \blue{\text{Divide both sides by }x^ky^h} \\ \frac kx + \frac hy \frac {dy}{dx} & = \frac {k+h}{x+y} \left(1+\frac {dy}{dx}\right) & \small \blue{\text{Rearrange}} \\ \left(\frac hy - \frac {k+h}{x+y} \right) \frac {dy}{dx} & = \frac {k+h}{x+y} - \frac kx \\ \left(\frac {hx-ky}{y(x+y)} \right) \frac {dy}{dx} & = \frac {hx-ky}{x(x+y)} \\ \implies \frac{dy}{dx} & = \boxed {\frac yx} \end{aligned}

The question is a little over-complicated, but the above is a great solution.

Let us try to find a = y / x a=y/x for any given x x . ie y = a x y=ax

x h ( a x ) k = x h + k ( 1 + a ) h + k x^h(ax)^k=x^{h+k}(1+a)^{h+k}

a k = ( 1 + a ) h + k a^k=(1+a)^{h+k} . ie a a is independent of x , y x,y ,

ie a a is constant, y = a x y=ax , for all valid x x .

So actually all the possible outcomes of the original equation are straight lines!

And d y / d x = a dy/dx=a , a constant for any given ( h , k ) (h,k) . Calling it y / x y/x suggests it varies with x x , but it does not!

Max Patrick - 1 year, 7 months ago

Log in to reply

Glad that you like the solution.

Chew-Seong Cheong - 1 year, 7 months ago

Let y = v x y=vx . Substituting in the given equation, we have x k ( v x ) h = ( x + v x ) k + h x^k(vx)^h=(x+vx)^{k+h} , or v h = ( v + 1 ) k + h v^h=(v+1)^{k+h} . So v v is constant, independent of h and k . So d y d x = v = y x \dfrac{dy}{dx}=v=\dfrac{y}{x} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...