Find the expression value

Algebra Level pending

Positive real numbers x x , y y , and z z are such that x + y + z + x y z = 4 x+y+z+\sqrt{xyz} =4 . Find value of the expression:

( 4 x ) ( 4 y ) z + ( 4 y ) ( 4 z ) x + ( 4 z ) ( 4 x ) y x y z \sqrt{(4-x)(4-y)z} + \sqrt{(4-y)(4-z)x} + \sqrt{(4-z)(4-x)y} - \sqrt{xyz}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 28, 2020

Consider the first radical:

( 4 x ) ( 4 y ) z = ( 16 4 ( x + y ) + x y ) z = ( 16 4 ( x + y + z ) + 4 z + x y ) z = ( 16 4 ( 4 x y z ) + 4 z + x y ) z = ( 4 x y z + 4 z + x y ) z = ( ( 2 z ) 2 + 2 ( 2 z ) x y + ( x y ) 2 ) z = ( 2 z + x y ) 2 z = 2 z + x y z \begin{aligned} \sqrt{(4-x)(4-y)z} & = \sqrt{(16-4(x+y) + xy)z} \\ & = \sqrt{(16-4(x+y+z) + 4z + xy)z} \\ & = \sqrt{(16-4(4-\sqrt{xyz}) + 4z + xy)z} \\ & = \sqrt{(4\sqrt{xyz} + 4z + xy)z} \\ & = \sqrt{((2\sqrt z)^2+2(2\sqrt z) \sqrt{xy}+ (\sqrt{xy})^2)z} \\ & = \sqrt{(2\sqrt z + \sqrt{xy})^2z} \\ & = 2 z + \sqrt{xyz} \end{aligned}

Therefore we have:

S = ( 4 x ) ( 4 y ) z + ( 4 y ) ( 4 z ) x + ( 4 z ) ( 4 x ) y x y z = 2 z + x y z + 2 x + x y z + 2 y + x y z x y z = 2 ( x + y + z + x y z ) = 8 \begin{aligned} S & = \sqrt{(4-x)(4-y)z} + \sqrt{(4-y)(4-z)x} + \sqrt{(4-z)(4-x)y} - \sqrt{xyz} \\ & = 2z + \sqrt{xyz} + 2x + \sqrt{xyz} + 2y + \sqrt{xyz} - \sqrt{xyz} \\ & = 2(x+y+z + \sqrt{xyz}) \\ & = \boxed 8 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...