Find the first term

Algebra Level 3

An infinite geometric series has sum 2014. If the sum of their squares is also 2014, find the first term.

2014 201 5 2 \frac {2014}{2015^2} 2013 2015 \frac {2013}{2015} 4028 2015 \frac {4028}{2015} 2013 2014 \frac {2013}{2014}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Michael Zheng
Sep 17, 2018

Which software?

James Bacon - 2 years, 8 months ago

Log in to reply

I wrote it using Maple.

Michael Zheng - 2 years, 8 months ago
Chew-Seong Cheong
Sep 24, 2018

Let the first term of the infinite geometric progression be a a , its common ratio be r r and b = 2014 b=2014 . Then,

{ a 1 r = b a = b b r . . . ( 1 ) a 2 1 r 2 = b a 2 = b b r 2 . . . ( 2 ) \begin{cases} \dfrac a{1-r} & = b & \implies a = b - br & ...(1) \\ \dfrac {a^2}{1-r^2} & = b & \implies a^2 = b - br^2 & ...(2) \end{cases}

( 1 ) 2 = ( 2 ) : ( b b r ) 2 = b b r 2 Divide both sides by b b ( 1 r ) 2 = 1 r 2 b r 2 2 b r + b = 1 r 2 ( b + 1 ) r 2 2 b r + b 1 = 0 \begin{aligned} \implies (1)^2 = (2): \quad (b-br)^2 & = b - br^2 & \small \color{#3D99F6} \text{Divide both sides by }b \\ b(1-r)^2 & = 1 - r^2 \\ br^2 - 2br + b & = 1-r^2 \\ (b+1)r^2 - 2br + b-1 & = 0 \end{aligned}

r = 2 b ± 4 b 2 4 ( b + 1 ) ( b 1 ) 2 ( b + 1 ) = { 1 Series diverges – rejected b 1 b + 1 < 1 Series converses – accepted \implies r = \dfrac {2b \pm \sqrt{4b^2-4(b+1)(b-1)}}{2(b+1)} = \begin{cases} 1 & \small \color{#D61F06} \text{Series diverges -- rejected} \\ \dfrac {b-1}{b+1} < 1 & \small \color{#3D99F6} \text{Series converses -- accepted} \end{cases}

Therefore, the first term a = b b r = b b ( b 1 ) b + 1 = 2 b b + 1 a = b - br = b - \dfrac {b(b-1)}{b+1} = \dfrac {2b}{b+1} . For b = 2014 b = 2014 , a = 4028 2015 a = \boxed{\dfrac {4028}{2015}} .

Edwin Gray
Sep 17, 2018

The first series is a + ar + ar^2 +...…. with S 1 = a/(1-r) = 2014. The second series is a^2 + a^2r^2 +...…. with S 2 = a^2/(1 - r^2) = 2014. Is S 1 = S 2, a/(1 - r) = a^2/(1 - r^2). Multiplying by (1 -r)/a, 1 = a/(1 + r), so a = 1 + r. Then 2014 = (1+r)/(1 - r), or 2014 - 2014r = 1 + r, 2013 = 2015r, and r = 2013/2015. a = 1 +r = 1 + 2013/2015 = 4028/2015. Ed Gray

use latex to make your answer much nicer

James Bacon - 2 years, 8 months ago

i = 0 ( a x i ) 1 a x x 1 \sum _{i=0}^{\infty } \left(\frac{a}{x^i}\right)^1 \Longrightarrow \frac{a x}{x-1}

i = 0 ( a x i ) 2 a 2 x 2 x 2 1 \sum _{i=0}^{\infty } \left(\frac{a}{x^i}\right)^2 \Longrightarrow \frac{a^2 x^2}{x^2-1}

a x x 1 = a 2 x 2 x 2 1 = 2014 a 4028 2015 , x 2015 2013 \frac{a x}{x-1}=\frac{a^2 x^2}{x^2-1}=2014 \Longrightarrow a\to \frac{4028}{2015},x\to \frac{2015}{2013}

The value of a a is the answer. If the series were both started from i=1 instead, then the answer is the same: 4024 2015 \frac{4024}{2015} . In general, the answer is 2 year year + 1 \frac{2\ \text{year}}{\text{year}+1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...