find the friction, dude.

A Particle "A" is initially kept at rest at the top point of the quarter circle show in the figure and comes to rest at the bottom point of the quarter circle. Friction between the Particle and surface is x. Assuming that particle always translates but doesn't rotate, what can be the appropriate equation which satisfies x?

3 x = ( 2 x 2 ) × e π x 3x = (2-{ x }^{ 2 }) \times { e }^{ \pi x } Radius must be specified x = ( 1 x 2 ) × e π x x =(1-{ x }^{ 2 }) \times { e }^{ \pi x } 2 x = ( 1 x 2 ) × e π x 2x = (1-{ x }^{ 2 }) \times \quad { e }^{ \pi x }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

At the point where the particle makes angle a a with the center of the arc w.r.to horizontal, velocity be r ω r\omega . the FBD of the particle is given. form this , N = m g × cos ( a ) + m r ω 2 N\quad =\quad mg\times \cos { (a) } +mr{ \omega }^{ 2 } as f = x N f=xN , tangential acceleration a t { a }_{ t } is a t = g ( cos ( a ) x sin ( a ) ) x r ω 2 = r d ω d t = r ω d ω d a { a }_{ t }\quad =\quad g(\cos { (a) } -x\sin { (a) } )-xr\omega ^{ 2 }\quad =\quad r\frac { d\omega }{ dt } \quad =\quad r\omega \frac { d\omega }{ da } let k = r ω 2 2 g k\quad =\quad \frac { r{ \omega }^{ 2 } }{ 2g } . then the above equation can be written as cos ( a ) x sin ( a ) = d k d a + 2 x k \cos { (a) } -x\sin { (a) } =\quad \frac { dk }{ da } \quad +\quad 2xk Now apply maths:multiply both sides by e 2 x a {e}^{2xa} - ( cos ( a ) x sin ( a ) ) e 2 x a = d k d a e 2 x a + 2 x k e 2 x a = d d a ( x e 2 x a ) (\cos { (a) } -x\sin { (a) } ){ e }^{ 2xa }\quad =\quad \frac { dk }{ da } { e }^{ 2xa }\quad +\quad 2xk{ e }^{ 2xa }\quad =\quad \frac { d }{ da } (x{ e }^{ 2xa }) ( cos ( a ) x sin ( a ) ) e 2 x a d a = d ( x e 2 x a ) (\cos { (a) } -x\sin { (a) } ){ e }^{ 2xa }\quad da\quad =\quad d(x{ e }^{ 2xa }) integrate from a = 0 a=0 to a = π / 2 a=\pi/2 . 0 π / 2 ( cos ( a ) x sin ( a ) ) e 2 x a d a = 0 π / 2 d ( x e 2 x a ) = 0 \int _{ 0 }^{ \pi /2 }{ (\cos { (a) } -x\sin { (a) } ){ e }^{ 2xa }\quad da } \quad =\quad \int _{ 0 }^{ \pi /2 }{ d(x{ e }^{ 2xa }) } \quad =\quad 0 . solving this, we get the answer.

Ahmed Aljayashi
Feb 23, 2019

The provided options are wrong , the correct answer should be 3 x = ( 1 2 x 2 ) × e π x 3x = (1-2x^2) \times e^{\pi x}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...