Find the function and value

Calculus Level 5

If f ( x ) = x + 0 1 ( x y 2 + x 2 y ) ( f ( y ) ) d y \large{f(x)=x+\displaystyle \int^{1}_{0}(xy^2+x^2 y)(f(y))dy}

Find f ( 9 ) \left\lfloor f\left( 9 \right) \right\rfloor


The answer is 68.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jul 24, 2015

Rearranging will help a lot

f ( x ) = x ( 1 + 0 1 y 2 f ( y ) d y ) + x 2 ( 0 1 y f ( y ) d y ) \large{f(x)=x(1+\displaystyle \int^{1}_{0} y^2 f(y) dy)+x^2(\displaystyle \int^{1}_{0} yf(y)dy)}

f ( x ) = a x + b x 2 f(x)=ax+bx^2 where

a = 1 + 0 1 y 2 f ( y ) d y a=1+\displaystyle \int^{1}_{0} y^2 f(y) dy

a = 1 + 0 1 y 2 ( a y + b y 2 ) d y a=1+\displaystyle \int^{1}_{0} y^2(ay+by^2)dy

on integrating and applying limits

a = 1 + a 4 + b 5 \large{a=1+\frac{a}{4}+\frac{b}{5}}

15 a 4 b = 20............................ ( 1 ) 15a-4b=20............................(1)

and

b = 0 1 y f ( y ) d y = 0 1 y ( a y + b y 2 ) d y \large{b=\displaystyle \int^{1}_{0} yf(y) dy=\displaystyle \int^{1}_{0}y(ay+by^2)dy}

b = a 3 + b 4 \large{b=\frac{a}{3}+\frac{b}{4}}

4 a 9 b = 0............................. ( 2 ) 4a-9b=0.............................(2)

solving ( 1 ) (1) and ( 2 ) (2)

f ( x ) = 80 x 2 + 180 x 119 \large{f(x)=\frac{80x^2+180x}{119}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...