Find the function from numbers

Calculus Level 3

Let f : ( 1 , + ) R f:(1,+\infty)\to \mathbb R be a continuous function such that:

2 150 ( x 1 ) ln ( x 1 ) ( 2 f ( x ) ( x 1 ) ln ( x 1 ) ) d x = 2 150 f 2 ( x ) d x \int_{2}^{150} (x-1)\ln(x-1)(2f(x)-(x-1)\ln(x-1))dx=\int_{2}^{150}f^{2}(x)dx

If f ( 101 ) = A f(101)=A , enter A \lfloor A\rfloor as your answer.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 460.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maximos Stratis
Jun 4, 2017

We can move the LHS integral to the RHS to get:
2 150 ( f 2 ( x ) ( x 1 ) l n ( x 1 ) ( 2 f ( x ) ( x 1 ) l n ( x 1 ) ) ) d x = 0 \int_{2}^{150}(f^{2}(x)-(x-1)ln(x-1)(2f(x)-(x-1)ln(x-1)))dx=0\Rightarrow
2 150 ( f 2 ( x ) 2 f ( x ) ( x 1 ) l n ( x 1 ) + ( ( x 1 ) l n ( x 1 ) ) 2 ) d x = 0 \int_{2}^{150}(f^{2}(x)-2f(x)(x-1)ln(x-1)+((x-1)ln(x-1))^{2})dx=0\Rightarrow
2 150 ( f ( x ) ( x 1 ) l n ( x 1 ) ) 2 d x = 0 \int_{2}^{150}(f(x)-(x-1)ln(x-1))^{2}dx=0
But, ( f ( x ) ( x 1 ) l n ( x 1 ) ) 2 0 (f(x)-(x-1)ln(x-1))^{2}\geq 0 , so:
( f ( x ) ( x 1 ) l n ( x 1 ) ) 2 = 0 (f(x)-(x-1)ln(x-1))^{2}=0\Rightarrow
f ( x ) ( x 1 ) l n ( x 1 ) = 0 f(x)-(x-1)ln(x-1)=0\Rightarrow
f ( x ) = ( x 1 ) l n ( x 1 ) f(x)=(x-1)ln(x-1)
Therefor:
f ( 101 ) = 100 × l n ( 100 ) f(101)=100\times ln(100)\Rightarrow
A 460.517 A\approx 460.517\Rightarrow
A = 460 \boxed{\lfloor A\rfloor=460}


You have to mention why the integrand will be zero

Kushal Bose - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...