Find the greatest integer k k

Find the greatest integer k k for which 199 1 k 1991^k divides

199 0 199 1 1992 + 199 2 199 1 1990 1990^{1991^{1992}} + 1992^{1991^{1990}}


The answer is 1991.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Jun 5, 2017

Relevant wiki: Binomial Theorem

N = 199 0 199 1 1992 + 199 2 199 1 1990 = ( 1991 1 ) 199 1 1992 + ( 1991 + 1 ) 199 1 1990 = k = 0 199 1 1992 ( 199 1 1992 k ) ( 1 ) k 199 1 ( 199 1 1992 k ) + k = 0 199 1 1990 ( 199 1 1990 k ) 199 1 ( 199 1 1990 k ) ( By binomial expansion ) \begin{aligned} N = \displaystyle 1990^{1991^{1992}} + 1992^{1991^{1990}} &= (1991-1)^{1991^{1992}} + (1991+1)^{1991^{1990}} \\ &= \displaystyle \sum_{k=0}^{1991^{1992}} \dbinom{1991^{1992}}{k} (-1)^k 1991^{\left(1991^{1992}-k\right)} + \sum_{k=0}^{1991^{1990}} \dbinom{1991^{1990}}{k} 1991^{\left(1991^{1990}-k\right)} \\ & \small \color{#3D99F6} (\text{By binomial expansion}) \end{aligned}

We notice that the powers of 1991 1991 in both the sum are decreasing, so to find the maximum value of k k for which 199 1 k 1991^k divides the above, we take the last two terms of each sum into consideration, let this be S S

S = [ ( 199 1 1992 199 1 1992 1 ) 1991 1 ] + [ ( 199 1 1990 199 1 1990 1 ) 1991 + 1 ] = 1991 [ ( 199 1 1992 199 1 1992 1 ) + ( 199 1 1990 199 1 1990 1 ) ] = 1991 ( 199 1 1992 + 199 1 1990 ) = 199 1 1993 + 199 1 1991 \displaystyle \begin{aligned} S &= \left[ \dbinom{1991^{1992}}{1991^{1992} -1} 1991 - 1 \right] + \left[ \dbinom{1991^{1990}}{1991^{1990} -1} 1991 + 1 \right] \\ &= \displaystyle 1991 \left[ \dbinom{1991^{1992}}{1991^{1992} -1} + \dbinom{1991^{1990}}{1991^{1990} -1} \right] \\ &= \displaystyle 1991 \left( 1991^{1992} + 1991^{1990} \right) \\ &= \displaystyle 1991^{1993} + 1991^{1991} \end{aligned}

Thus the smallest term in N N is 199 1 1991 1991^{1991} which is divisible for k max = 1991 \boxed{k_{\text{ max}} = 1991} , i.e. by 199 1 1991 1991^{1991} .

Shourya Pandey
Jun 9, 2017

We have by Lift the exponent lemma:

v 1991 ( 199 0 199 1 1992 + 1 ) = v 1991 ( 1990 + 1 ) + v 1991 ( 199 1 1992 ) = 1 + 1992 = 1993 v_{1991}(1990^{1991^{1992}} + 1) = v_{1991}(1990+1)+ v_{1991}(1991^{1992}) = 1+ 1992 = 1993

v 1991 ( 199 2 199 1 1990 1 ) = v 1991 ( 1992 1 ) + v 1991 ( 199 1 1990 ) = 1 + 1990 = 1991 v_{1991}(1992^{1991^{1990}} - 1) = v_{1991}(1992-1)+ v_{1991}(1991^{1990}) = 1 + 1990 = 1991 .

Therefore v 1991 ( 199 0 199 1 1992 + 199 2 199 1 1990 ) = v 1991 ( 199 0 199 1 1992 + 1 + 199 2 199 1 1990 1 ) = m i n ( 1991 , 1993 ) = 1991 v_{1991}(1990^{1991^{1992}}+ 1992^{1991^{1990}}) = v_{1991}(1990^{1991^{1992}}+1 + 1992^{1991^{1990}} -1 ) = min(1991,1993) = \boxed{1991} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...