Reciprocal Of Sum Of Reciprocals

Algebra Level 4

1 1 2003 + 1 2004 + 1 2005 + 1 2006 + 1 2007 + 1 2008 + 1 2009 \large\frac{1}{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}

Find the integer part of the expression above.


The answer is 286.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 28, 2016

Let x = 1 1 2003 + 1 2004 + 1 2005 + 1 2006 + 1 2007 + 1 2008 + 1 2009 x = \dfrac{1}{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}} .

Then we have: 1 7 2003 < x < 1 7 2009 286.1428 < x < 287 x = 286 \dfrac 1{\frac 7{2003}} < x < \dfrac 1{\frac 7{2009}} \implies 286.1428 < x < 287 \implies \lfloor x \rfloor = \boxed{286}

Moderator note:

Your second line follows because 2003 < 2004 < 2009 2003 < 2004 < 2009 , 2003 < 2005 < 2009 , , 2003 < 2008 < 2009 2003 < 2005 < 2009 , \ldots , 2003 < 2008 < 2009 , then

1 2009 < 1 2004 < 1 2003 , 1 2009 < 1 2005 < 1 2003 , , 1 2009 < 1 2008 < 1 2003 . \dfrac1{2009} < \dfrac1{2004} < \dfrac1{2003} \quad ,\quad \dfrac1{2009} < \dfrac1{2005 } < \dfrac1{2003} \quad,\quad \ldots \quad , \quad \dfrac1{2009} < \dfrac1{2008} < \dfrac1{2003} .

Adding up all of these inequalities up gives

5 2009 < 1 2004 + 1 2005 + + 1 2008 < 5 2003 1 2003 + 6 2009 < 1 2003 + 1 2004 + 1 2005 + + 1 2008 + 1 2009 < 6 2003 + 1 2009 1 2009 + 6 2009 < 1 2003 + 6 2009 < 1 2003 + 1 2004 + 1 2005 + + 1 2008 + 1 2009 < 6 2003 + 1 2009 < 6 2003 + 1 2003 7 2009 < 1 2003 + 1 2004 + 1 2005 + + 1 2008 + 1 2009 < 7 2003 \begin{aligned} \dfrac5{2009} < &\dfrac1{2004} + \dfrac1{2005} + \cdots + \dfrac1{2008} &< \dfrac5{2003} \\ \dfrac1{2003} + \dfrac6{2009} < &\dfrac1{2003} + \dfrac1{2004} + \dfrac1{2005} + \cdots + \dfrac1{2008} + \dfrac1{2009}& < \dfrac6{2003} + \dfrac1{2009} \\ \dfrac1{2009} + \dfrac6{2009} < \dfrac1{2003} + \dfrac6{2009} < &\dfrac1{2003} + \dfrac1{2004} + \dfrac1{2005} + \cdots + \dfrac1{2008} + \dfrac1{2009}& < \dfrac6{2003} + \dfrac1{2009}< \dfrac6{2003} + \dfrac1{2003} \\ \dfrac7{2009} < &\dfrac1{2003} + \dfrac1{2004} + \dfrac1{2005} + \cdots + \dfrac1{2008} + \dfrac1{2009}& < \dfrac7{2003} \\ \end{aligned}

It´s worth noting that 7 x 7x is the harmonic mean of 2003 , 2004 , , 2009 2003, 2004, \dots , 2009 and so because of that we have 2003 7 < x < 2009 7 \frac{2003}{7} < x < \frac{2009}{7} .

Josh Banister - 4 years, 10 months ago

Did it the same way😁

will jain - 4 years, 10 months ago

Why you have that second statement? Please explain more.

Eric Chan - 4 years, 10 months ago

Log in to reply

We note that 1 2003 > 1 2004 > 1 2005 > 1 2006 > 1 2007 > 1 2008 > 1 2009 \frac{1}{2003}> \frac{1}{2004}>\frac{1}{2005}>\frac{1}{2006}>\frac{1}{2007}>\frac{1}{2008} >\frac{1}{2009} 1 2003 + 1 2004 + 1 2005 + 1 2006 + 1 2007 + 1 2008 + 1 2009 < 1 2003 + 1 2003 + 1 2003 + 1 2003 \implies \frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009} < \frac{1}{2003}+\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2003} + 1 2003 + 1 2003 + 1 2003 = 7 2003 +\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2003} = \frac 7{2003} . Similarly, 1 2003 + 1 2004 + 1 2005 + 1 2006 + 1 2007 + 1 2008 + 1 2009 > 7 2009 \frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009} > \frac 7{2009} . 1 7 2003 < x < 1 7 2009 \implies \frac 1{\frac 7{2003}} < x < \frac 1{\frac 7{2009}} .

Chew-Seong Cheong - 4 years, 10 months ago

I just have the same statement BUT using approximation of having 7 '2003' and 7 '2009' in the expression

Eric Chan - 4 years, 10 months ago
Rishav Koirala
Jul 29, 2016

I used differentials to approximate the value of the individual fractions in the denominator. Consider the Denominator

Let f ( x ) = 1 / x f(x)=1/x . Then f ( x + δ x ) = f ( x ) + f ( x ) δ x f(x+\delta x) = f(x)+f^{'}(x) \cdot \delta x , where I've taken δ x \delta x to be a deviation about a central value x x .

So, 1 x + δ x = 1 x 1 x 2 δ x \frac{1}{x+\delta x} = \frac{1}{x} - \frac{1}{x^2} \delta x Now let us choose the central value x x to be 2006 2006 . Then the approximated denominator becomes:

D = i = 1 7 1 2006 1 200 6 2 δ x i D = \sum_{i=1}^{7}{\frac{1}{2006} - \frac{1}{2006^2} \delta x_{i}} , since there are 7 7 terms in the denominator. The second part of the summation is zero, as the sum of the deviations about 2006 2006 is zero. So, the approximated denominator is D = i = 1 7 1 2006 = 7 2006 D= \sum_{i=1}^{7} \frac{1}{2006} = \frac{7}{2006} .

Hence the answer is 1 / D = 2006 7 = 286.5714 = 286 \lfloor 1/D \rfloor = \lfloor \frac{2006}{7} \rfloor =\lfloor 286.5714 \rfloor = \boxed{286}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...