Find all integer points!

Geometry Level 5

As shown above, there are two points A ( 1 , 0 ) , B ( 2 , 0 ) A(-1,0), B(2,0) on the coordinate. M ( x 0 , y 0 ) M(x_0,y_0) is a point in the first quadrant such that M B A = 2 M A B \angle MBA = 2\angle MAB . How many different solutions for M M are there if x 0 ( 1 , 2020 ] , y 0 > 0 x_0 \in (1,2020], y_0>0 and x 0 , y 0 x_0,y_0 are integers ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Jan 3, 2020

Drop a perpendicular. Then tan ( α ) = y 0 1 + x 0 , tan ( β ) = y 0 2 x 0 . \tan(\alpha) = \frac{y_0}{1+x_0}, \tan(\beta) = \frac{y_0}{2-x_0}. Since tan ( β ) = 2 tan ( α ) 1 tan 2 ( α ) , \tan(\beta) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}, we get y 0 2 x 0 = 2 y 0 1 + x 0 1 y 0 2 ( 1 + x 0 ) 2 y 0 2 x 0 = 2 y 0 ( 1 + x 0 ) ( 1 + x 0 ) 2 y 0 2 1 2 x 0 = 2 ( 1 + x 0 ) ( 1 + x 0 ) 2 y 0 2 2 ( 2 x 0 ) ( 1 + x 0 ) = ( 1 + x 0 ) 2 y 0 2 y 0 2 = ( 1 + x 0 ) ( 1 + x 0 2 ( 2 x 0 ) ) y 0 2 = ( 1 + x 0 ) ( 3 x 0 3 ) y 0 2 3 x 0 2 = 3 \begin{aligned} \frac{y_0}{2-x_0} &= \frac{2\frac{y_0}{1+x_0}}{1-\frac{y_0^2}{(1+x_0)^2}} \\ \frac{y_0}{2-x_0} &= \frac{2y_0(1+x_0)}{(1+x_0)^2-y_0^2} \\ \frac1{2-x_0} &= \frac{2(1+x_0)}{(1+x_0)^2-y_0^2} \\ 2(2-x_0)(1+x_0) &= (1+x_0)^2-y_0^2 \\ y_0^2 &= (1+x_0)(1+x_0-2(2-x_0)) \\ y_0^2 &= (1+x_0)(3x_0-3) \\ y_0^2 -3x_0^2 &= -3 \end{aligned}

This is related to Pell's equation . The solutions are of the form y 0 + x 0 3 = 3 ( 2 + 3 ) n y_0+x_0\sqrt{3} = \sqrt{3}(2+\sqrt{3})^n for positive values of n . n. This leads to the solutions ( 2 , 3 ) , ( 7 , 12 ) , ( 26 , 45 ) , ( 97 , 168 ) , ( 362 , 627 ) , ( 1351 , 2340 ) , ( 5042 , 8733 ) , (2,3), (7,12), (26,45), (97,168), (362,627), (1351,2340), (5042,8733), \ldots There are 6 \fbox{6} with x x -coordinate in ( 1 , 2020 ] . (1,2020].

i got the first part but didnt know how to solve the pells eqn.

Sahil Sagwekar - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...