Find the integration #1

Calculus Level 3

0 sin 4 ( x ) x 2 d x = ? \large \int_0^\infty \frac {\sin^4 (x)}{x^2} dx = \ ?


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Khaled Mera
Jan 4, 2018

thanks sir Chew-Seong Cheong

I = 0 sin 4 x x 2 d x See note: sin 4 x = cos 4 x 4 cos 2 x + 3 8 = 0 cos 4 x 4 cos 2 x + 3 8 x 2 d x = 1 8 0 cos 4 x x 2 d x 1 2 0 cos 2 x x 2 d x + 3 8 0 1 x 2 d x By integration by parts = cos 4 x 8 x 0 1 2 0 sin 4 x x d x + cos 2 x 2 x 0 + 0 sin 2 x x d x 3 8 x 0 where Si ( x ) = 0 x sin t t d t is the sine integral. = cos 4 x 4 cos 2 x + 3 8 x 0 1 2 Si ( ) + Si ( ) See note: sin 4 x = cos 4 x 4 cos 2 x + 3 8 = sin 4 x x 0 + π 4 Note that Si ( ) = π 2 = lim x 0 sin x x sin 3 x lim x sin 4 x x + π 4 = 0 0 + π 4 0.785 \begin{aligned} I & = \int_0^\infty \frac {\color{#D61F06}\sin^4 x}{x^2} dx & \small \color{#D61F06} \text{See note: } \sin^4 x = \frac {\cos 4x - 4\cos 2x + 3}8 \\ & = \int_0^\infty \frac {\color{#D61F06}\cos 4x - 4\cos 2x + 3}{{\color{#D61F06}8}x^2} dx \\ & = {\color{#3D99F6}\frac 18 \int_0^\infty \frac {\cos 4x}{x^2} dx - \frac 12 \int_0^\infty \frac {\cos 2x}{x^2} dx} + \frac 38 \int_0^\infty \frac 1{x^2} dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6}- \frac {\cos 4x}{8x}\bigg|_0^\infty - \frac 12 \int_0^\infty \frac {\sin 4x}x dx + \frac {\cos 2x}{2x}\bigg|_0^\infty + \int_0^\infty \frac {\sin 2x}x dx} - \frac 3 {8x} \bigg|_0^\infty & \small \color{#3D99F6} \text{where } \text{Si}(x) = \int_0^x \frac {\sin t}t dt \text{ is the sine integral.} \\ & = -\frac {\color{#D61F06}\cos 4x - 4\cos 2x + 3}{{\color{#D61F06}8}x} \bigg|_0^\infty - \frac 12 {\color{#3D99F6}\text{Si}(\infty)} + {\color{#3D99F6}\text{Si}(\infty)} & \small \color{#D61F06} \text{See note: } \sin^4 x = \frac {\cos 4x - 4\cos 2x + 3}8 \\ & = -\frac {\color{#D61F06}\sin^4 x}x \bigg|_0^\infty + {\color{#3D99F6}\frac \pi 4} & \small \color{#3D99F6} \text{Note that } \text{Si}(\infty) = \frac \pi 2 \\ & = \lim_{x \to 0} \frac {\sin x}x \cdot \sin^3 x - \lim_{x \to \infty} \frac {\sin^4 x}x + \frac \pi 4 \\ & = 0 - 0 + \frac \pi 4 \approx \boxed{0.785} \end{aligned}


Note:

sin 4 x = ( 1 cos 2 x ) 2 4 = 1 2 cos 2 x + cos 2 2 x 4 = 1 2 cos 2 x + 1 2 ( 1 + cos 4 x ) 4 = cos 4 x 4 cos 2 x + 3 8 \sin^4 x = \dfrac {(1-\cos 2x)^2}4 = \dfrac {1-2\cos 2x + \cos^2 2x}4 = \dfrac {1-2\cos 2x +\frac 12(1+\cos 4x)}4 = \dfrac {\cos 4x - 4\cos 2x + 3}8

thanks sir Chew-Seong Cheong

Khaled Mera - 3 years, 5 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...