Integration Problem by Aly Ahmed

Calculus Level 3

0 x 3 3 x 1 d x = ? \large \int_0^\infty \frac {x^3}{3^x-1} dx = \ ?


The answer is 4.4579.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Apr 12, 2020

Consider the integral:

I = 0 x 3 3 x 1 d x I = \int_{0}^{\infty} \frac{x^3}{3^x-1}dx I = 0 x 3 3 x 1 3 x d x \implies I = \int_{0}^{\infty} \frac{x^3 3^{-x}}{1-3^{-x}}dx

Recognising that as x > 0 x>0 :

3 x 1 3 x = k = 1 3 k x \frac{ 3^{-x}}{1-3^{-x}}= \sum_{k=1}^{\infty} 3^{-kx}

Therefore:

I = 0 x 3 ( k = 1 3 k x ) d x I = \int_{0}^{\infty} x^3 \left(\sum_{k=1}^{\infty} 3^{-kx} \right)dx

Let: x ln 3 = z x\ln{3} = z . This substitution transforms the integral to:

I = 1 ( ln 3 ) 4 0 z 3 ( k = 1 e k z ) d z I = \frac{1}{(\ln{3})^4}\int_{0}^{\infty} z^3 \left(\sum_{k=1}^{\infty} \mathrm{e}^{-kz} \right)dz

I = 1 ( ln 3 ) 4 0 z 3 ( e z + e 2 z + e 3 z + ) d z I = \frac{1}{(\ln{3})^4}\int_{0}^{\infty} z^3 \left(\mathrm{e}^{-z}+\mathrm{e}^{-2z}+\mathrm{e}^{-3z} + \dots \right)dz

Now, consider the integral:

J ( k ) = 0 z 3 e k z d z J(k) = \int_{0}^{\infty} z^3 \mathrm{e}^{-kz} \ dz Taking k z = t kz = t transforms the integral to:

J ( k ) = 1 k 4 0 t 3 e t d t J(k) = \frac{1}{k^4}\int_{0}^{\infty} t^3 \mathrm{e}^{-t} \ dt J ( k ) = 1 k 4 Γ ( 4 ) \implies J(k) = \frac{1}{k^4} \Gamma(4) J ( k ) = 6 k 4 J(k) = \frac{6}{k^4}

Since Γ ( n + 1 ) = n ! \Gamma(n+1) = n! . Using the above result transforms I I as follows:

I = 1 ( ln 3 ) 4 ( J ( 1 ) + J ( 2 ) + J ( 3 ) + ) I = \frac{1}{(\ln{3})^4}\left(J(1)+J(2)+J(3)+ \dots \right) I = 6 ( ln 3 ) 4 ( k = 1 1 k 4 ) \implies I = \frac{6}{(\ln{3})^4} \left(\sum_{k=1}^{\infty} \frac{1}{k^4}\right)

I = 6 ( ln 3 ) 4 π 4 90 \implies I = \frac{6}{(\ln{3})^4} \frac{\pi^4}{90} I = π 4 15 ( ln 3 ) 4 4.458 \implies \boxed{I = \frac{\pi^4}{15(\ln{3})^4}\approx 4.458}

This is because as per the definition of the Reimann-Zeta function:

k = 1 1 k 4 = π 4 90 \sum_{k=1}^{\infty} \frac{1}{k^4}=\frac{\pi^4}{90}

Shouldn't it be (3^x - 1) instead of (3^x + 1)?

Chiang Jun Siang - 1 year, 2 months ago

Log in to reply

Thank you for pointing out the typo. I solved it the right way but typed the integrand with the wrong sign. It is now corrected.

Karan Chatrath - 1 year, 2 months ago
Chew-Seong Cheong
Apr 19, 2020

I = 0 x 3 3 x 1 d x Let u = x ln 3 d u = ln 3 d x = 1 ln 4 3 0 u 3 e u 1 d u = ζ ( 4 ) Γ ( 4 ) ln 4 3 where ζ ( ) is the Riemann zeta function = π 4 3 ! 90 ln 4 3 and Γ ( ) is the gamma function 4.4579 \begin{aligned} I & = \int_0^\infty \frac {x^3}{3^x -1} dx & \small \blue{\text{Let }u = x\ln 3 \implies du = \ln 3\ dx} \\ & = \frac 1{\ln^4 3} \int_0^\infty \frac {u^3}{e^u -1} du \\ & = \frac {\blue{\zeta (4)}\red{\Gamma(4)}}{\ln^4 3} & \small \blue{\text{where }\zeta(\cdot) \text{ is the Riemann zeta function}} \\ & = \frac {\blue{\pi^4}\red{3!}}{\blue{90} \ln^4 3} & \small \red{\text{and }\Gamma(\cdot) \text{ is the gamma function}} \\ & \approx \boxed{4.4579} \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...