Find the Integral

Calculus Level 3

Given that 12 10 f ( x ) d x = 6 \displaystyle \int_{12}^{-10} f(x) \ dx = 6 , 100 10 f ( x ) d x = 2 \displaystyle \int_{100}^{-10} f(x) \ dx = -2 , and 100 5 f ( x ) d x = 4 \displaystyle \int_{100}^{-5} f(x) \ dx = 4 , determine the value of 5 12 f ( x ) d x \displaystyle \int_{-5}^{12} f(x) \ dx .


The answer is -12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tom Engelsman
May 9, 2020

We require:

5 12 f ( x ) d x = 5 100 f ( x ) d x + 100 10 f ( x ) d x + 10 12 f ( x ) d x = ( 4 ) + ( 2 ) + ( 6 ) = 12 . \int_{-5}^{12} f(x) dx = \int_{-5}^{100} f(x) dx + \int_{100}^{-10} f(x) dx + \int_{-10}^{12} f(x) dx = (-4) + (-2) + (-6) = \boxed{-12}.

Chew-Seong Cheong
May 11, 2020

5 12 f ( x ) d x = 10 12 f ( x ) d x 10 5 f ( x ) d x = 10 12 f ( x ) d x ( 10 100 f ( x ) d x 5 100 f ( x ) d x ) = 12 10 f ( x ) d x + 100 10 f ( x ) d x 100 5 f ( x ) d x = 6 2 4 = 12 \begin{aligned} \int_{-5}^{12} f(x)\ dx & = \int_{-10}^{12} f(x)\ dx - \int_{-10}^{-5} f(x)\ dx \\ & = \int_{-10}^{12} f(x)\ dx - \left(\int_{-10}^{100} f(x)\ dx - \int_{-5}^{100} f(x)\ dx \right) \\ & = - \int^{-10}_{12} f(x)\ dx + \int^{-10}_{100} f(x)\ dx - \int^{-5}_{100} f(x)\ dx \\ & = -6-2-4 = \boxed{-12} \end{aligned}

Let f ( x ) d x = g ( x ) \displaystyle \int f(x)dx=g(x) . Then we have g ( 10 ) g ( 12 ) = 6 , g ( 10 ) g ( 100 ) = 2 , g ( 5 ) g ( 100 ) = 4 g(-10)-g(12)=6, g(-10)-g(100)=-2, g(-5)-g(100)=4 .

Solving these we get g ( 12 ) g ( 5 ) = 12 g(12)-g(-5)=-12 , that is, 5 12 f ( x ) d x = 12 \displaystyle \int_{-5}^{12} f(x)dx=\boxed {-12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...