Find the largest Circle

Geometry Level pending

O O is the center of this semicircle, A A and C C lie of the circumference of the semicircle. The length of O A = O C OA=OC is 1. What is the maximum radius of the incircle of A O C \triangle AOC ? Express it as a a b c \sqrt \dfrac{a\sqrt a -b}{c} , where a a is square-free and b b and c c are coprime positive integers. Submit a + b + c a+b+c .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the inradius be r r and A C O = θ \angle ACO = \theta . Then A O C = 18 0 2 θ \angle AOC = 180^\circ - 2\theta and:

r cot A O C 2 + r cot A C O 2 = O C r cot ( 9 0 θ ) + r cot θ 2 = 1 r tan θ + r cot θ 2 = 1 Let t = tan θ 2 2 t 1 t 2 r + r t = 1 1 + t 2 t ( 1 t 2 ) r = 1 r = t ( 1 t 2 ) 1 + t 2 To find maximum r d r d t = ( 1 3 t 2 ) ( 1 + t 2 ) 2 t 2 ( 1 t 2 ) ( 1 + t 2 ) 2 = 1 4 t 2 t 4 ( 1 + t 2 ) Putting d r d t = 0 t 4 + 4 t 2 1 = 0 ( t 2 + 2 ) 2 = 5 t 2 = 5 2 t = 5 2 Since tan θ 2 > 0 max ( r ( t ) ) = r ( 5 2 ) As r 0 = 5 2 ( 3 5 ) 5 1 = 5 2 ( 2 5 2 ) 4 = ( 5 2 ) ( 6 2 5 ) 2 = 5 5 11 2 \begin{aligned} r \cot \frac {\angle AOC}2 + r \cot \frac {\angle ACO}2 & = OC \\ r \cot (90^\circ - \theta) + r \cot \frac \theta 2 & = 1 \\ r \tan \theta + r \cot \frac \theta 2 & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac {2t}{1-t^2} r + \frac rt & = 1 \\ \frac {1+t^2}{t(1-t^2)} r & = 1 \\ \implies r & = \frac {t(1-t^2)}{1+t^2} & \small \blue{\text{To find maximum }r} \\ \frac {dr}{dt} & = \frac {(1-3t^2)(1+t^2) - 2t^2(1-t^2)}{(1+t^2)^2} \\ & = \frac {1-4t^2-t^4}{(1+t^2)} & \small \blue{\text{Putting }\frac {dr}{dt} = 0} \\ t^4+4t^2 - 1 & = 0 \\ (t^2+2)^2 & = 5 \\ t^2 & = \sqrt 5 - 2 \\ \implies t & = \sqrt{\sqrt 5 -2} & \small \blue{\text{Since }\tan \frac \theta 2 > 0} \\ \implies \max (r(t)) & = r \left(\sqrt{\sqrt 5-2}\right) & \small \blue{\text{As }r \ge 0} \\ & = \frac {\sqrt{\sqrt 5 - 2}(3-\sqrt 5)}{\sqrt 5 - 1} \\ & = \frac {\sqrt{\sqrt 5 - 2}(2\sqrt 5-2)}4 \\ & = \frac {\sqrt{(\sqrt 5 - 2)(6-2\sqrt 5)}}2 \\ & = \sqrt{\frac {5\sqrt 5 -11}2} \end{aligned}

Therefore a + b + c = 5 + 11 + 2 = 18 a+b+c = 5+11 + 2 = \boxed {18} .

Pi Han Goh
Mar 1, 2021

Let θ = A O B \theta = \measuredangle AOB . The area of the isosceles triangle A B C ABC is A : = 1 2 1 1 sin θ = 1 2 sin θ (1) \mathcal A := \frac12 \cdot 1 \cdot 1 \cdot \sin \theta = \frac12 \sin \theta \tag1

By cosine rule , the length A C AC satisfies ( A C ) 2 = 1 2 + 1 2 2 1 1 cos θ = 2 ( 1 cos θ = 2 sin 2 ( θ 2 ) ) A C = 2 sin ( θ 2 ) (2) (AC)^2 = 1^2 + 1^2 - 2\cdot 1\cdot 1 \cdot \cos \theta = 2 (\underbrace{1 - \cos\theta}_{=\, 2\sin^2(\tfrac\theta2) }) \quad \Leftrightarrow \quad AC = 2\sin(\tfrac\theta2) \tag2

Let the radius of the incircle be denote by r r , then A = r s \mathcal A = r \cdot s , where s s is the semiperimeter of the triangle A O C AOC , s = A O + O C + A C 2 = 1 + sin ( θ 2 ) (3) s = \frac{AO + OC + AC}2 = 1 + \sin(\tfrac\theta2) \tag 3

Thus, we want to maximize r = A s = 1 2 sin θ 1 + sin θ 2 , 0 < θ < π (4) r= \frac{\mathcal A}s = \frac12 \cdot \frac{\sin \theta}{1 + \sin \tfrac\theta2},\quad\quad\quad\quad\quad\quad 0< \theta <\pi \tag4

Note that as θ \theta approaches 0 or π \pi , r r approaches 0. So one of the critical point(s) of r r must be a maximum value.

At its critical point(s), d r d θ = 0 \dfrac{dr}{d\theta} = 0 . Applying quotient rule produces 2 [ sin ( θ 2 ) + 1 ] cos θ = 2 sin 2 ( θ 2 ) sin θ = 2 sin ( θ 2 ) cos ( θ 2 ) cos ( θ 2 ) = 0 2 \Big [ \sin \left( \tfrac \theta 2 \right) + 1 \Big ] \cdot \underbrace{\cos \theta}_{=\, 2 \sin^2(\tfrac\theta2)} - \underbrace{\sin \theta}_{=\, 2 \sin(\tfrac\theta2) \cos(\tfrac\theta2)} \cdot \cos\left( \tfrac\theta 2 \right) = 0

For simplicity sake, let y = sin ( θ 2 ) > 0 y = \sin(\tfrac\theta2) > 0 , then cos 2 ( θ 2 ) = 1 y 2 \cos^2 (\tfrac\theta2) = 1 - y^2 , the equation above becomes 2 ( y + 1 ) 2 y 2 2 y ( 1 y 2 ) = 0 y 3 + 2 y 2 1 = 0 ( y + 1 ) ( y 2 + y 1 ) = 0 y = 1 + 5 2 only 2(y + 1)\cdot 2y^2 - 2y \cdot (1-y^2) = 0 \quad \Leftrightarrow \quad y^3 + 2y^2 - 1 = 0\quad \Leftrightarrow \quad (y + 1)(y^2 + y - 1) = 0 \quad \Leftrightarrow \quad y = \dfrac{-1+\sqrt5}2 \text{ only}

We're left to substitute sin ( θ 2 ) = 1 + 5 2 \sin \left (\dfrac\theta2\right) = \dfrac{-1 + \sqrt5}2 into ( 4 ) (4) .

Rewriting sin θ = 2 sin ( θ 2 ) cos ( θ 2 ) = 2 sin ( θ 2 ) 1 sin 2 ( θ 2 ) , \sin \theta = 2\sin(\tfrac\theta2) \cos( \tfrac\theta2) = 2\sin(\tfrac\theta2) \cdot \sqrt{ 1 - \sin^2(\tfrac\theta2)},

we have max ( r ) = 5 5 11 2 \max(r) = \sqrt{\dfrac{5\sqrt5 - 11}2} . The answer is a + b + c = 5 + 11 + 2 = 18 . a + b + c = 5 + 11 + 2 = \boxed{18}.

Bonus questions :

  1. As shown, C C is the point of one end of the semicircle. Let B B be the other end of the semicircle. Can we find anything interesting about the circle that is inscribed inside the obtuse isosceles triangle O A B OAB ?

  2. How do we find the distance between the center of the semicircle and the center of the incircle?

Pi Han Goh - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...