Find the largest

Algebra Level 3

The larger of A = 9 9 50 + 10 0 50 A=99^{ 50 }+100 ^{ 50 } and B = 10 1 50 B=101^{ 50 } is

Both are equal B A Cannot be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Suyash Mittal
May 8, 2014

C o n s i d e r , ( 101 ) 50 ( 99 ) 50 ( 100 ) 50 Consider,\quad { (101) }^{ 50 }-{ (99) }^{ 50 }-{ (100) }^{ 50 } = ( 100 + 1 ) 50 ( 100 1 ) 50 ( 100 ) 50 ={ (100+1) }^{ 50 }-{ (100-1) }^{ 50 }-{ (100) }^{ 50 } = { ( 100 ) 50 ( 1 + 0.01 ) 50 ( 1 0.01 ) 50 1 } =\{ { (100) }^{ 50 }{ (1+0.01) }^{ 50 }-{ (1-0.01) }^{ 50 }-1\} = ( 100 ) 50 { 2 { 50 C 1 ( 0.01 ) + 50 C 3 ( 0.01 ) 3 + . . . } 1 } ={ (100) }^{ 50 }\{ 2\{ _{ }^{ 50 }{ { C }_{ 1 } }(0.01)+_{ }^{ 50 }{ { C }_{ 3 }{ (0.01) }^{ 3 }+...\} -1\} } = ( 100 ) 50 { 2 { 50 C 3 ( 0.01 ) 3 + 50 C 5 ( 0.01 ) 5 + . . . } ={ (100) }^{ 50 }\{ 2\{ _{ }^{ 50 }{ { C }_{ 3 } }{ (0.01) }^{ 3 }+_{ }^{ 50 }{ { C }_{ 5 }{ (0.01) }^{ 5 }+...\} } ( 101 ) 50 { ( 99 ) 50 + ( 100 ) 50 } > 0 \therefore \quad { (101) }^{ 50 }-\{ { (99) }^{ 50 }+{ (100) }^{ 50 }\} \quad >\quad 0 ( 101 ) 50 > ( 99 ) 50 + ( 100 ) 50 \Rightarrow \quad { (101) }^{ 50 }\quad >\quad { (99) }^{ 50 }+{ (100) }^{ 50 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...