Find The Last Two Digits Of 1 2 1996 12^{1996}

Find the last two digits of 1 2 1996 12^{1996} .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 22, 2019

We need to find 1 2 1996 m o d 100 12^{1996} \bmod 100 . Since gcd ( 12 , 100 ) 1 \gcd (12,100) \ne 1 , we consider the factors 4 4 and 25 25 factors of 100 100 separately using Chinese remainder theorem as follows:

Factor 4: 1 2 1996 0 (mod 4) 12^{1996} \equiv 0 \text{ (mod 4)}

Factor 25: Since gcd ( 12 , 25 ) = 1 \gcd(12, 25) = 1 , Euler's theorem applies; and Euler's totient function ϕ ( 25 ) = 25 × 4 5 = 20 \phi (25) = 25 \times \frac 45 = 20 .

1 2 1996 1 2 1996 m o d ϕ ( 25 ) (mod 25) 1 2 1996 m o d 20 (mod 25) 1 2 16 14 4 8 4 4 8 (mod 25) 2 16 ( 10 + 1 ) 8 (mod 25) 1024 ( 64 ) ( 80 + 1 ) (mod 25) ( 1 ) ( 14 ) ( 6 ) (mod 25) 9 16 (mod 25) \begin{aligned} 12^{1996} & \equiv 12^{1996\ \color{#3D99F6} \bmod \phi (25)} \text{ (mod 25)} \\ & \equiv 12^{1996\ \color{#3D99F6} \bmod 20} \text{ (mod 25)} \\ & \equiv 12^{16} \equiv 144^8 \equiv 44^8 \text{ (mod 25)} \\ & \equiv 2^{16}(10+1)^8 \text{ (mod 25)} \\ & \equiv 1024(64)(80+1) \text{ (mod 25)} \\ & \equiv (-1)(14)(6) \text{ (mod 25)} \\ & \equiv -9 \equiv 16 \text{ (mod 25)} \end{aligned}

Since 16 0 (mod 4) 16 \equiv 0 \text{ (mod 4)} , 2 1998 16 (mod 100) \implies 2^{1998} \equiv \boxed{16} \text{ (mod 100)} .

Otto Bretscher
Jan 22, 2019

We start with some simple observations: (a) 12 × 2 1 ( m o d 25 ) 12\times 2 \equiv -1 \pmod{25} , so (b) 1 2 4 × 2 4 1 ( m o d 25 ) 12^4 \times 2^4 \equiv 1 \pmod{25} , and (c) 1 2 20 1 ( m o d 25 ) 12^{20} \equiv 1 \pmod{25} by Euler. Now

1 2 1996 1 2 2000 × 16 16 ( m o d 25 ) 12^{1996} \equiv 12^{2000} \times 16 \equiv \boxed{16} \pmod{25} and this congruency holds modulo 4 (and 100) as well since both sides are divisible by 4.

Prasant Nair
Jan 22, 2019

The most exciting approach is to view the problem as

1 2 y m o d ( 25 × 4 ) 12^{y} \hspace{0.2cm}mod \hspace{0.2cm}(25 \times 4) .

We can generate a reusable formula applying chineese remainder theorem and then minify the exponention using the shortcut:

( a . p 1 ) n m o d p 2 = ( n . a . p 1 ) m o d p 2 (a.p - 1)^{n}\hspace{0.2cm} mod \hspace{0.2cm}p^{2} = (n.a.p - 1) mod \hspace{0.2cm}p^{2} .

The above two methods yield this final shortcut:

Let r = y mod 5.

L e t b = 1 2 r m o d 5 2 = ( r . 10 1 ) m o d 5 2 Let \hspace{0.2cm}b = 12^{r}\hspace{0.2cm} mod \hspace{0.2cm}5^{2} = (r.10 - 1) mod \hspace{0.2cm}5^{2} .

If y is divisible by 4:

1 2 y m o d ( 100 ) = ( 24 × b m o d ( 100 ) ) ) 12^{y}\hspace{0.2cm}mod\hspace{0.2cm}(100) = (-24\times - b \hspace{0.2cm} mod \hspace{0.2cm}(100)))

If y is divisible by 2:

1 2 y m o d ( 100 ) = ( 24 × b m o d ( 100 ) ) ) 12^{y}\hspace{0.2cm}mod\hspace{0.2cm}(100) = (-24\times b \hspace{0.2cm} mod \hspace{0.2cm}(100)))

In the given problem, y = 1996;

r = 1996 mod 5 = 1

b = (10.1 - 1) mod 25 = 9

Since 1996 is divisible by 4,

Solution = ( 24 × 9 ) m o d 100 (-24\times - 9 ) \hspace{0.2cm} mod \hspace{0.2cm}100

= 16

.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...