A calculus problem by Aly Ahmed

Calculus Level 3

lim x 0 x 2 sin 2 x x 2 tan 2 x = ? \lim_{x\to0} \dfrac{x^2 - \sin^2 x}{x^2 - \tan^2 x } = \, ?


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 27, 2019

Similar solution with @Isaac YIU Math Studio 's

L = lim x 0 x 2 sin 2 x x 2 tan 2 x = lim x 0 x sin x x tan x × lim x 0 x + sin x x + tan x Both are 0/0 cases, L’H o ˆ pital’s rule applies = lim x 0 1 cos x 1 sec 2 x × lim x 0 1 + cos x 1 + sec 2 x Again a 0/0 case = lim x 0 sin x 2 sec 2 x tan x × 2 2 Differentiate up and down w.r.t. x = lim x 0 cos 3 x 2 = 1 2 = 0.5 \begin{aligned} L & = \lim_{x \to 0} \frac {x^2 - \sin^2 x}{x^2 - \tan^2 x} \\ & = \color{#3D99F6} \lim_{x \to 0} \frac {x - \sin x}{x - \tan x} \times \lim_{x \to 0} \frac {x + \sin x}{x + \tan x} & \small \color{#3D99F6} \text{Both are 0/0 cases, L'Hôpital's rule applies} \\ & = {\color{#3D99F6} \lim_{x \to 0} \frac {1 - \cos x}{1 - \sec^2 x}} \times \lim_{x \to 0} \frac {1 + \cos x}{1 + \sec^2 x} & \small \color{#3D99F6} \text{Again a 0/0 case} \\ & = {\color{#3D99F6} \lim_{x \to 0} \frac {\sin x}{- 2 \sec^2 x \tan x}} \times \frac 22 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \lim_{x \to 0} - \frac {\cos^3 x}2 = - \frac 12 = \boxed {-0.5} \end{aligned}


Reference: L'Hôpital's rule

Great solution!

Isaac YIU Math Studio - 1 year, 10 months ago

lim x 0 x 2 sin 2 x x 2 tan 2 x = lim x 0 x sin x x tan x × lim x 0 x + sin x x + tan x = lim x 0 1 cos x 1 sec 2 x × lim x 0 1 + sin x x 1 + tan x x = lim x 0 1 cos x ( 1 sec x ) ( 1 + sec x ) = lim x 0 cos x 1 + sec x = 1 2 \lim _{ x\rightarrow 0 }{ \frac { { x }^{ 2 }-\sin ^{ 2 }{ x } }{ { x }^{ 2 }-\tan ^{ 2 }{ x } } } \\ =\lim _{ x\rightarrow 0 }{ \frac { { x }-\sin { x } }{ { x }-\tan { x } } } \times \quad \lim _{ x\rightarrow 0 }{ \frac { { x }+\sin { x } }{ { x }+\tan { x } } } \\ =\lim _{ x\rightarrow 0 }{ \frac { 1-\cos { x } }{ 1-\sec ^{ 2 }{ x } } } \times \quad \lim _{ x\rightarrow 0 }{ \frac { { 1 }+\frac { \sin { x } }{ x } }{ { 1 }+\frac { \tan { x } }{ x } } } \\ =\lim _{ x\rightarrow 0 }{ \frac { 1-\cos { x } }{ \left( 1-\sec { x } \right) \left( 1+\sec { x } \right) } } \\ =\lim _{ x\rightarrow 0 }{ \frac { -\cos { x } }{ 1+\sec { x } } } \\ =-\frac { 1 }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...