Find the lim

Calculus Level 3

lim x 0 ( 2 x + 3 x + 5 x 3 ) 3 x = ? \large \lim_{x \to 0} \left(\frac {2^x+3^x+5^x}3\right)^\frac 3x = ?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 30, 2018

Relevant wiki: L'Hôpital's Rule

L = lim x 0 ( 2 x + 3 x + 5 x 3 ) 3 x A 1 case = exp ( lim x 0 3 x ( 2 x + 3 x + 5 x 3 1 ) ) lim x a ( f ( x ) ) g ( x ) = e lim x a g ( x ) ( f ( x ) 1 ) = exp ( lim x 0 2 x + 3 x + 5 x 3 x ) A 0/0 case, L’H o ˆ pital’s rule applies. = exp ( lim x 0 2 x ln 2 + 3 x ln 3 + 5 x ln 5 1 ) Differentiate up and down w.r.t. x . = exp ( ln 2 + ln 3 + ln 5 ) = e ln 30 = 30 \begin{aligned} L & = \lim_{x \to 0} \left(\frac {2^x+3^x+5^x}3\right)^\frac 3x & \small \color{#3D99F6} \text{A }1^\infty \text{ case} \implies \\ & = \exp \left(\lim_{x \to 0} \frac 3x \left(\frac {2^x+3^x+5^x}3 - 1\right)\right) & \small \color{#3D99F6} \lim_{x \to a}(f(x))^{g(x)} = e^{\lim_{x \to a}g(x)(f(x)-1)} \\ & = \exp \left(\lim_{x \to 0} \frac {2^x+3^x+5^x-3}x \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{x \to 0} \frac {2^x\ln 2+3^x\ln 3+5^x\ln 5}1 \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x. \\ & = \exp \left(\ln 2+\ln 3+\ln 5\right) \\ & = e^{\ln 30} = \boxed{30} \end{aligned}


Reference: Limit of 1 1^\infty -case (see 2nd method )

Zico Quintina
May 29, 2018

L = lim x 0 ( 2 x + 3 x + 5 x 3 ) 3 x ln L = ln ( lim x ( 2 x + 3 x + 5 x 3 ) 3 x ) = lim x 0 ( ln ( 2 x + 3 x + 5 x 3 ) 3 x ) = lim x 0 ( 3 x ln ( 2 x + 3 x + 5 x 3 ) ) = lim x 0 3 ln ( 2 x + 3 x + 5 x 3 ) x [Indeterminate form 0 0 ; use L’Hospital’s Rule] = lim x 0 3 1 3 ( 2 x ln 2 + 3 x ln 3 + 5 x ln 5 ) ( 2 x + 3 x + 5 x 3 ) = ln 2 + ln 3 + ln 5 = ln 30 L = 30 \begin{aligned} L &= \lim_{x \to 0} \left( \dfrac{2^x + 3^x + 5^x}{3} \right)^{\dfrac{3}{x}} \\ \\ \\ \ln L &= \ln \left( \lim_{x \to \infty} \left( \dfrac{2^x + 3^x + 5^x}{3} \right)^{\dfrac{3}{x}} \right) \\ \\ \\ &= \lim_{x \to 0} \left( \ln \left( \dfrac{2^x + 3^x + 5^x}{3} \right)^{\dfrac{3}{x}} \right) \\ \\ \\ &= \lim_{x \to 0} \left( \dfrac{3}{x} \ \ln \left( \dfrac{2^x + 3^x + 5^x}{3} \right) \right) \\ \\ \\ &= \lim_{x \to 0} \dfrac{3 \ln \left( \dfrac{2^x + 3^x + 5^x}{3} \right)}{x} \qquad \qquad \small \text{[Indeterminate form } \frac{0}{0} \text{; use L'Hospital's Rule]}\\ \\ \\ &= \lim_{x \to 0} \dfrac{3 \cdot \dfrac{1}{3} \left( 2^x \ln 2 + 3^x \ln 3 + 5^x \ln 5 \right)}{\left( \dfrac{2^x + 3^x + 5^x}{3} \right)} \\ \\ \\ &= \ln 2 + \ln 3 + \ln 5 = \ln 30 \\ \\ \\ \therefore L &= \boxed{30} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...