Find the limit

Calculus Level 3

lim x ( cos ( 1 x ) + 1 x ) x = ? \large \lim_{x\to\infty} \left( \cos\left( \dfrac1x\right) + \dfrac1x \right)^x = \, ?

Give your answer to 3 decimal places.


The answer is 2.718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Anthony Ritz
Mar 5, 2016

Take the natural log of the expression to get x ln ( cos ( 1 x ) + 1 x ) x*\ln\left(\cos\left(\dfrac{1}{x}\right)+\dfrac{1}{x}\right) .

Now let y = 1 x y=\dfrac{1}{x} and the expression becomes ln ( cos ( y ) + y ) y \dfrac{\ln\left(\cos(y)+y\right)}{y} .

lim y 0 ( ln ( cos ( y ) + y ) y ) \displaystyle \lim_{y \to 0} \left(\dfrac{\ln\left(\cos(y)+y\right)}{y}\right) satisfies the 0 0 \dfrac{0}{0} condition for l'Hopital's Rule, so we may evaluate by taking the derivatives of numerator and denominator, which gives lim y 0 ( 1 sin ( y ) cos ( y ) + y ) \displaystyle \lim_{y \to 0} \left(\dfrac{1-\sin(y)}{\cos(y)+y}\right) .

This limit may be directly evaluated, and its result is 1 1 .

Finally, we recall the natural logarithm taken at the first step. 1 1 is the limit of the natural logarithm of the expression, so e 1 = e 2.718 e^1=e\approx\boxed{2.718} is the limit of the original expression itself.

Great approach! This is the correct technical way to approach such an "iterated" limit.

Calvin Lin Staff - 5 years, 3 months ago

Use \displaystyle before \lim

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

Thanks. :)

Anthony Ritz - 5 years, 3 months ago

Log in to reply

Also, for trigonometric functions and natural log,
Use \ln for natural log \sin , \cos , \tan, \csc, \sec, \cot for trigonometric functions. You may also use \left & \right to make your brackets look enlarged.

Example :

Without \left & \right, ( 1 2 ) (\dfrac{1}{2} )

With \left & \right,
( 1 2 ) \left( \dfrac{1}{2} \right)
You can toggle latex to see the code.

A Former Brilliant Member - 5 years, 3 months ago

lim x cos ( 1 x ) = 1 \displaystyle \lim_{x \to \infty}{\cos(\dfrac{1}{x})=1} . So the limit is equivalent to lim x ( 1 + 1 x ) x = e 2.718 \displaystyle \lim_{x \to \infty}{\left(1+\dfrac{1}{x} \right)}^x=e \approx 2.718

No, with such iterated limits, you cannot choose to apply it on specific values.

E.g., it is not true that lim x ( 1 + 1 x ) x = lim x 1 x = 1 \lim_{x \rightarrow \infty} ( 1 + \frac{1}{x} ) ^x = \lim _{x \rightarrow \infty } 1^x = 1 .

Calvin Lin Staff - 5 years, 3 months ago
Chew-Seong Cheong
Feb 29, 2016

Let the limit be L L , then we have:

L = lim x ( cos ( 1 x ) + 1 x ) x By Maclaurin series = lim x ( ( 1 1 2 ! x 2 + 1 4 ! x 4 . . . ) + 1 x ) x Since, when x , 1 x 1 x 2 1 x 4 1 x 6 . . . = lim x ( 1 + 1 x ) x = e 1 2.718 \begin{aligned} L & = \lim_{x \to \infty} \left(\color{#3D99F6}{\cos\left(\frac{1}{x}\right)} + \frac{1}{x} \right)^x \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \lim_{x \to \infty} \left(\color{#3D99F6}{\left( 1 - \frac{1}{2!x^2} + \frac{1}{4!x^4} -... \right)} + \frac{1}{x} \right)^x \quad \quad \small \color{#3D99F6}{\text{Since, when } x \to \infty, \frac{1}{x} \gg \frac{1}{x^2} \gg \frac{1}{x^4} \gg \frac{1}{x^6} \gg ...} \\ & = \lim_{x \to \infty} \left(1+\frac{\color{#3D99F6}{1}}{x} \right)^x = e^\color{#3D99F6}{1} \approx \boxed{2.718} \end{aligned}

Moderator note:

The second to third equations needs further justification. The exponent comes into play, and has to be accounted for in order to justify dropping the x 2 x^{-2} terms.

Rishi Sharma
Feb 29, 2016

lim x > ( cos 1 x + 1 x ) x = lim y > 0 ( cos y + y ) 1 y w h e r e 1 x = y = lim y > 0 ( cos y + y + 1 1 ) ( 1 cos y + y 1 ) c o s y + y 1 y u s i n g lim x > 0 ( 1 + x ) 1 x = e t h e l i m i t t r a n s f o r m s t o e lim y > 0 ( cos y + y 1 ) y A s b o t h t h e f u n c t i o n s a r e c o n t i n o u s a n d d i f f e r e n t i a b l e U s i n g L H o p i t a l s r u l e t h e l i m i t t r a n s f o r m s t o e lim y > 0 s i n y + 1 1 = e 1 2.718 \lim _{ x->\infty }{ { \left( \cos { \frac { 1 }{ x } } +\frac { 1 }{ x } \right) }^{ x } } =\lim _{ y->0 }{ { \left( \cos { y } +y \right) }^{ \frac { 1 }{ y } } } \quad where\quad \frac { 1 }{ x } =y\\ =\lim _{ y->0 }{ { \left( \cos { y } +y+1-1 \right) }^{ (\frac { 1 }{ \cos { y+y-1 } } )*\frac { cosy+y-1 }{ y } } } \\ using\quad \lim _{ x->0 }{ { \left( 1+x \right) }^{ \frac { 1 }{ x } } } =e\\ the\quad limit\quad transforms\quad to\quad { e }^{ \lim _{ y->0 }{ \frac { \left( \cos { y+y-1 } \right) }{ y } } }\\ As\quad both\quad the\quad functions\quad are\quad continous\quad and\quad differentiable\\ Using\quad L'Hopital's\quad rule\quad the\quad limit\quad transforms\quad to\quad \\ { e }^{ \lim _{ y->0 }{ \frac { siny+1 }{ 1 } } }={ e }^{ 1 }\approx 2.718

Nice solution

Jose Sacramento - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...