Find the limit

Calculus Level 4

A convergent recursive sequence is defined as follows: a 1 = 1 3 , a 2 = 4 9 , a 3 = 16 27 a_{1}=\frac{1}{3}, a_{2}=\frac{4}{9}, a_3=\frac{16}{27} and a n = 1 3 ( a n 1 + a n 2 + a n 3 ) a_{n}=\frac{1}{3}(a_{n-1}+a_{n-2}+a_{n-3}) for n 4 n \ge 4 .

Find lim n a n \displaystyle \lim_{n \to \infty} a_n .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2018

a n = 1 3 ( a n 1 + a n 2 + a n 3 ) 3 a n = a n 1 + a n 2 + a n 3 3 k = 4 n a k = k = 4 n a k 1 + k = 4 n a k 2 + k = 4 n a k 3 3 k = 4 n a k = k = 3 n 1 a k + k = 2 n 2 a k + k = 1 n 3 a k 3 a n + 2 a n 1 + a n 2 = 3 a 3 + 2 a 2 + a 1 lim n ( 3 a n + 2 a n 1 + a n 2 ) = 16 9 + 8 9 + 1 3 = 3 6 lim n a n = 3 lim n a n = 1 2 = 0.5 \begin{aligned} a_n & = \frac 13 \left(a_{n-1} + a_{n-2} + a_{n-3}\right) \\ 3 a_n & = a_{n-1} + a_{n-2} + a_{n-3} \\ 3 \sum_{k=4}^n a_k & = \sum_{k=4}^n a_{k-1} + \sum_{k=4}^n a_{k-2} + \sum_{k=4}^n a_{k-3} \\ 3 \sum_{k=4}^n a_k & = \sum_{k=3}^{n-1} a_k + \sum_{k=2}^{n-2} a_k + \sum_{k=1}^{n-3} a_k \\ 3a_n + 2a_{n-1} + a_{n-2} & = 3a_3 + 2a_2 + a_1 \\ \lim_{n \to \infty} \left(3a_n + 2a_{n-1} + a_{n-2}\right) & = \frac {16}9 + \frac 89 + \frac 13 = 3 \\ 6 \lim_{n \to \infty} a_n & = 3 \\ \implies \lim_{n \to \infty} a_n & = \frac 12 = \boxed{0.5} \end{aligned}

3 a n + 2 a n 1 + a n 2 = 3 3 ( a n 1 + a n 2 + a n 3 ) + 2 a n 1 + a n 2 = 3 a n 1 + 2 a n 2 + a n 3 = = 3 a 3 + 2 a 2 + a 1 3a_{n}+2a_{n-1}+a_{n-2}=\frac{3}{3}(a_{n-1}+a_{n-2}+a_{n-3})+2a_{n-1}+a_{n-2}=3a_{n-1}+2a_{n-2}+a_{n-3}=…=3a_{3}+2a_{2}+a_{1} .Hence lim n ( 3 a n 1 + 2 a n 2 + a n 3 ) = 3 a 3 + 2 a 2 + a 1 = 3 \large \lim_{n\to\infty}(3a_{n-1}+2a_{n-2}+a_{n-3})=3a_{3}+2a_{2}+a_{1}=3 or 3 l + 2 l + l = 3 3l+2l+l=3 . Therefore l = 1 2 l=\frac{1}{2} where lim n a n = l . \large\lim_{n\to\infty}a_{n}=l.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...