Do I need to draw triangles as well?

Calculus Level 1

lim θ 0 1 cos θ 2 sin 2 θ = ? \large \lim_{\theta \to 0} \frac {1 - \cos \theta }{2 \sin^2 \theta } = \ ?

2 3 \frac 2 3 1 5 \frac 1 5 2 5 \frac 2 5 1 4 \frac 1 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Daniel Ferreira
Jun 27, 2015

lim θ 0 1 cos θ 2 ( 1 cos 2 θ ) = lim θ 0 1 cos θ 2 ( 1 + cos θ ) ( 1 cos θ ) = 1 2 ( 1 + 1 ) = 1 4 \lim_{\theta \to 0} \frac{1 - \cos \theta}{2(1 - \cos^2 \theta)} = \\\\ \lim_{\theta \to 0} \frac{1 - \cos \theta}{2(1 + \cos \theta)(1 - \cos \theta)} = \\\\ \frac{1}{2(1 + 1)} = \\\\ \boxed{\frac{1}{4}}

Rohit Nair
May 24, 2020

The limit has a 0 0 \frac{0}{0} indeterminate form. Apply L'Hospital Rule to get, s i n θ 2 s i n 2 θ \frac{sin \theta}{2sin 2\theta} , which is again in 0 0 \frac{0}{0} indeterminate form. Apply L'Hospital rule once again to obtain c o s θ 4 c o s 2 θ \frac{cos \theta}{4cos 2\theta} . Since cos is continuous functions, we can plug in the limit value of θ = 0 \theta = 0 into the expression.

Ankit Nigam
Apr 24, 2015

w e c a n c h a n g e t h e n u m e r a t o r ( 1 cos θ ) i n t o 2 sin 2 θ 2 we\quad can\quad change\quad the\quad numerator\quad \left( 1-\cos { \theta } \right) \quad into\quad 2\sin ^{ 2 }{ \frac { \theta }{ 2 } }

2 sin 2 θ 2 2 sin 2 θ \Rightarrow \frac { 2\sin ^{ 2 }{ \frac { \theta }{ 2 } } }{ 2\sin ^{ 2 }{ \theta } }

N o w i f w e m u l t i p l y a n d d i v i d e t h e n u m e r a t o r b y θ 2 4 a n d d e n o m i n a t o r b y θ 2 w e g e t Now\quad if\quad we\quad multiply\quad and\quad divide\quad the\quad numerator\quad by\quad \frac { { \theta }^{ 2 } }{ 4 } \quad and\quad denominator\quad by\quad { \theta }^{ 2\quad }we\quad get

2 sin 2 θ 2 ( θ 2 4 ) × ( θ 2 ) ( θ 2 4 ) × 2 sin 2 θ . ( θ 2 ) \Rightarrow \frac { 2\sin ^{ 2 }{ \frac { \theta }{ 2 } \left( \frac { { \theta }^{ 2 } }{ 4 } \right) } \times \left( { \theta }^{ 2 } \right) }{ \left( \frac { { \theta }^{ 2 } }{ 4 } \right) \times 2\sin ^{ 2 }{ \theta .\left( { \theta }^{ 2 } \right) } }

N o w a p p l y i n g t h e p r o p e r t y lim x 0 sin x x = 1 Now\quad applying\quad the\quad property\\ \lim _{ x\rightarrow 0 }{ \frac { \sin { x } }{ x } =1 } \quad

W e g e t lim θ 0 θ 2 4 θ 2 We\quad get\\ \lim _{ \theta \rightarrow 0 }{ \frac { { \theta }^{ 2 } }{ 4{ \theta }^{ 2 } } }

= 1 4 \boxed { =\frac { 1 }{ 4 } }

Aditya Raj
Apr 20, 2015

Multiply top and bottom by 1+cos(θ) to end up with limθ→01−cos2(θ)/2sin2(θ)(1+cos(θ))=limθ→01/2(1+cos(θ))=1/4 where the identity 1−cos2(θ)=sin2(θ) was used.

Moderator note:

Great! Can we solve the limit too if we applied lim x 0 sin ( x ) x = 1 \displaystyle \lim_{x \to 0} \frac {\sin(x)}{x} = 1 ?

Multiply top and bottom by 1 + cos ( θ ) 1 + \cos(\theta) to end up with

lim θ 0 1 cos 2 ( θ ) 2 sin 2 ( θ ) ( 1 + cos ( θ ) ) = lim θ 0 1 2 ( 1 + cos ( θ ) ) = 1 4 , \lim_{\theta \rightarrow 0} \dfrac{1 - \cos^{2}(\theta)}{2\sin^{2}(\theta)(1 + \cos(\theta))} = \lim_{\theta \rightarrow 0} \dfrac{1}{2(1 + \cos(\theta))} = \boxed{\dfrac{1}{4}},

where the identity 1 cos 2 ( θ ) = sin 2 ( θ ) 1 - \cos^{2}(\theta) = \sin^{2}(\theta) was used.

Nice approach, doesn't require any formulas or L'Hopital rule.

Abhishek Sharma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...