Find the Limit

Calculus Level 3

lim x 0 8 x 8 ( 1 cos x 2 2 cos x 2 4 + cos x 2 2 cos x 2 4 ) = ? \lim_{x \to 0} \frac 8{x^8}\left(1- \cos \frac {x^2}2 - \cos \frac {x^2}4 + \cos \frac {x^2}2 \cdot \cos \frac {x^2}4 \right) = \ ?


The answer is 0.03125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given expression can be rewritten as 1 32 × ( sin x 2 4 ) 2 ( x 2 4 ) 2 × ( sin x 2 8 ) 2 ( x 2 8 ) 2 \dfrac{1}{32}\times \dfrac{\left (\sin \dfrac{x^2}{4}\right ) ^2}{\left (\dfrac{x^2}{4}\right) ^2}\times \dfrac{\left (\sin \dfrac{x^2}{8}\right ) ^2}{\left (\dfrac{x^2}{8}\right )^2} . Hence the limiting value of the expression is 1 32 = 0.03125 \dfrac{1}{32}=\boxed {0.03125} .

L = lim x 0 8 x 8 ( 1 cos x 2 2 cos x 2 4 + cos x 2 2 cos x 2 4 ) Let u = x 2 4 = lim u 0 1 cos 2 u cos u + cos 2 u cos u 32 u 4 By Maclaurin series = lim u 0 1 ( 1 4 u 2 2 ! + 16 u 4 4 ! ) ( 1 u 2 2 ! + u 4 4 ! ) + ( 1 4 u 2 2 ! + 16 u 4 4 ! ) ( 1 u 2 2 ! + u 4 4 ! ) 32 u 4 = lim u 0 1 + 5 u 2 2 17 u 4 24 + ( 1 5 u 2 2 + ( 17 24 + 1 ) u 2 ) 32 u 4 = lim u 0 u 4 + O ( u 6 ) 32 u 4 Divide up and down by u 4 = lim u 0 1 + O ( u 2 ) 32 = 1 32 = 0.03125 \begin{aligned} L & = \lim_{x \to 0} \frac 8{x^8}\left(1 - \cos \frac {x^2}2 - \cos \frac {x^2}4 + \cos \frac {x^2}2 \cdot \cos \frac {x^2}4 \right) & \small \blue{\text{Let }u = \frac {x^2}4} \\ & = \lim_{u \to 0} \frac {1 - \cos 2u - \cos u + \cos 2u \cdot \cos u}{32u^4} & \small \blue{\text{By Maclaurin series}} \\ & = \lim_{u \to 0} \frac {1-\left(1 - \frac {4u^2}{2!} + \frac {16u^4}{4!} - \cdots \right) - \left(1 - \frac {u^2}{2!} + \frac {u^4}{4!} - \cdots \right) + \left(1 - \frac {4u^2}{2!} + \frac {16u^4}{4!} - \cdots \right) \left(1 - \frac {u^2}{2!} + \frac {u^4}{4!} - \cdots \right)}{32u^4} \\ & = \lim_{u \to 0} \frac {-1 + \frac {5u^2}2 - \frac {17u^4}{24} - \cdots + \left(1 - \frac {5u^2}2 + \left(\frac {17}{24}+1\right)u^2 - \cdots \right)}{32u^4} \\ & = \lim_{u \to 0} \frac {u^4 + O(u^6)}{32u^4} & \small \blue{\text{Divide up and down by }u^4} \\ & = \lim_{u \to 0} \frac {1 + O(u^2)}{32} = \frac 1{32} = \boxed{0.03125} \end{aligned}


Reference: Maclaurin series

@Aly Ahmed , just to let you know I amended this problem question.

Chew-Seong Cheong - 1 year, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...