Find the matrix

Algebra Level 3

P = [ cos π 4 sin π 4 sin π 4 cos π 4 ] X = [ 1 2 1 2 ] P= \begin{bmatrix} \cos\cfrac { \pi }{ 4 } & -\sin\cfrac { \pi }{ 4 } \\ \sin\cfrac { \pi }{ 4 } & \cos\cfrac { \pi }{ 4 } \end{bmatrix} \qquad \qquad X = \left[ \begin{matrix} \cfrac { 1 }{ \sqrt { 2 } } \\ \cfrac { 1 }{ \sqrt { 2 } } \end{matrix} \right]

For matrices P P and X X as defined above, find P 3 X P^3X .

[ 0 1 ] \left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] [ 1 2 1 2 ] \left[\begin{matrix}-\cfrac { 1 }{ \sqrt { 2 }}\\-\cfrac{1}{\sqrt{2}}\end{matrix} \right] [ 1 2 1 2 ] \left[\begin{matrix}\cfrac{ -1 }{\sqrt { 2 } }\\\cfrac{1}{\sqrt{ 2 } } \end{matrix} \right] [ 1 0 ] \left[ \begin{matrix} -1 \\ 0 \end{matrix} \right]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let P = [ cos π 4 sin π 4 sin π 4 cos π 4 ] = [ 1 2 1 2 1 2 1 2 ] = 1 2 [ 1 1 1 1 ] = 1 2 ( I + A ) P = \begin{bmatrix} \cos \frac \pi 4 & - \sin \frac \pi 4 \\ \sin \frac \pi 4 & \cos \frac \pi 4 \end{bmatrix} = \begin{bmatrix} \frac 1{\sqrt 2} & - \frac 1{\sqrt 2} \\ \frac 1{\sqrt 2} & \frac 1{\sqrt 2} \end{bmatrix} = \frac 1{\sqrt 2} \begin{bmatrix} 1 & - 1 \\ 1 & 1 \end{bmatrix} = \frac 1{\sqrt 2} (I+A) , where A = [ 0 1 1 0 ] A = \begin{bmatrix} 0 & - 1 \\ 1 & 0 \end{bmatrix} . Then

Y = P 3 X = 1 2 2 ( I + A ) 3 [ 1 2 1 2 ] = 1 4 ( I + 3 A + 3 A 2 + A 3 ) [ 1 1 ] Note that A 2 = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 1 0 0 1 ] = I = 1 4 ( I + 3 A 3 I A ) [ 1 1 ] A 3 = I A = A = 1 2 ( A I ) [ 1 1 ] = 1 2 ( [ 1 1 ] [ 1 1 ] ) = 1 2 [ 2 0 ] = [ 1 0 ] \begin{aligned} Y & = P^3X \\ & = \frac 1{2\sqrt 2}(I+A)^3 \begin{bmatrix} \frac 1{\sqrt 2} \\ \frac 1{\sqrt 2} \end{bmatrix} \\ & = \frac 14\left(I+3A+3A^2+A^3\right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \small \color{#3D99F6} \text{Note that }A^2 = \begin{bmatrix} 0 & - 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & - 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = - I \\ & = \frac 14\left(I+3A-3I-A\right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \small \color{#3D99F6} \implies A^3 = -IA = - A \\ & = \frac 12\left(A-I\right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ & = \frac 12\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \\ & = \frac 12\begin{bmatrix} -2 \\ 0 \end{bmatrix} \\ & = \boxed{\begin{bmatrix} -1 \\ 0 \end{bmatrix}} \end{aligned}

Sarth Vitekar.
Feb 25, 2017

Rotation of axes. Initial angle 45degrees, final angle being 135degrees, now the determinant can be written in terms of 135 degrees(just like the given matrix) , P^3X can be easily found out.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...