Find the maximum

Algebra Level 4

If a a and b b are non-zero real number such that a 2 + b 2 = a 2 b 2 a^2 + b^2 = a^2 b^2 and that the maximum value of the expression below is n n . Find n n .

12 a + 9 b + a b a b \dfrac{12a + 9b + ab}{ab}


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Nov 22, 2016

Note that a 2 + b 2 = a 2 b 2 a^2+b^2 = a^2b^2 1 b 2 + 1 a 2 = 1 \implies \color{#3D99F6} \dfrac 1{b^2} + \dfrac 1{a^2} = 1 and 12 a + 9 b + a b a b = 12 b + 9 a + 1 \dfrac {12a+9b+ab}{ab} = {\color{#D61F06}\dfrac {12}b + \dfrac 9a} + 1 .

Using Cauchy-Schwarz inequality :

( 12 b + 9 a ) 2 ( 1 2 2 + 9 2 ) ( 1 b 2 + 1 a 2 ) = 225 ( 1 ) 12 b + 9 a 15 \begin{aligned} \left({\color{#D61F06}\frac {12}b + \frac 9a}\right)^2 & \le \left(12^2 + 9^2 \right) \left(\color{#3D99F6} \dfrac 1{b^2} + \dfrac 1{a^2} \right) = 225({\color{#3D99F6}1}) \\ {\color{#D61F06}\frac {12}b + \frac 9a} & \le 15 \end{aligned}

Equality occurs when a = 5 3 a = \dfrac 53 and b = 5 4 b=\dfrac 54 .

12 a + 9 b + a b a b = 12 b + 9 a + 1 15 + 1 = 16 \begin{aligned} \implies \frac {12a+9b+ab}{ab} & = {\color{#D61F06}\dfrac {12}b + \dfrac 9a} + 1 \le {\color{#D61F06}15}+1 = 16 \end{aligned}

n = 16 \implies n = \boxed{16}

Archit Tripathi
Nov 23, 2016

Note that a 2 + b 2 = a 2 b 2 a^{2} + b^{2} = a^{2}b^{2} 1 a 2 + 1 b 2 = 1 \Rightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} = 1 .

Now, put 1 a = s i n ( A ) \frac{1}{a} = sin(A) and 1 b = s i n ( B ) \frac{1}{b} = sin(B)

12 a + 9 b + a b a b = 12 s i n ( A ) + 9 s i n ( B ) + 1 \Rightarrow \frac{12a + 9b + ab}{ab} = 12sin(A) + 9sin(B) +1

Now maximum value of this expression will be ( 12 ) 2 + ( 9 ) 2 + 1 = 15 + 1 = \sqrt{(12)^{2} + (9)^{2}} + 1 = 15 +1 = 16 \boxed{16}

Kushal Bose
Nov 20, 2016

a 2 + b 2 = a 2 b 2 a 2 + b 2 a 2 b 2 = 1 1 a 2 + 1 b 2 = 1 a^2+b^2=a^2b^2 \\ \implies \dfrac{a^2+b^2}{a^2b^2}=1 \\ \implies \dfrac{1}{a^2} + \dfrac{1}{b^2}=1

As 1 a 2 , 1 b 2 1 \dfrac{1}{a^2} , \dfrac{1}{b^2} \leq 1 .So 1 a 2 = s i n 2 x , 1 b 2 = c o s 2 x \dfrac{1}{a^2}=sin^2x, \dfrac{1}{b^2}=cos^2x

s i n x = 1 a , c o s x = 1 b sinx=\dfrac{1}{a}, cosx=\dfrac{1}{b}

The above expression becomes 24 b + 7 a + 1 = 7 s i n x + 24 c o s x + 1 \dfrac{24}{b} + \dfrac{7}{a}+1 \\=7sinx+24cosx+1

2 4 2 + 7 2 ( 7 2 4 2 + 7 2 s i n x + 24 2 4 2 + 7 2 c o s x ) + 1 \sqrt{24^2+7^2}( \dfrac{7}{\sqrt{24^2+7^2}}sinx + \dfrac{24}{\sqrt{24^2+7^2}}cosx)+1

= 25 s i n ( x + tan 1 ( 24 7 ) ) + 1 =25sin(x+ \tan^{-1}(\dfrac{24}{7})) + 1

So, the maximum value is 25 × 1 + 1 = 26 25 \times 1+1=26 and minimum value is 25 ( 1 ) + 1 = 24 25(-1)+1=-24

oh wow! i just was to write this one but you wrote, haha . And at last is it 25.1 or 25 × 1 25 \times 1 , check that. anyways good solution!!

Rakshit Joshi - 4 years, 6 months ago
Rakshit Joshi
Nov 20, 2016

24 a + 7 b + a b a b = 24 b + 7 a + 1 Now using Cauchy ( 24 b + 7 a ) 2 ( 2 4 2 + 7 2 ) ( a 2 + b 2 a 2 b 2 ) ( 24 b + 7 a ) 25 24 a + 7 b + a b a b 25 + 1 26 \dfrac{24a + 7b + ab}{ab} \\ = \dfrac{24}{b} + \dfrac{7}{a} + 1 \\ \text{Now using Cauchy} {\left( \dfrac{24}{b} + \dfrac{7}{a} \right)}^2 \le {\left(24^2 + 7^2 \right)}{\color{#3D99F6}\left(\frac{a^2+b^2}{a^2 b^2} \right)} \\ \implies {\left(\dfrac{24}{b} + \dfrac{7}{a} \right)} \le 25 \\ \implies \dfrac{24a + 7b + ab}{ab} \le 25 + 1 \\ \quad \quad \le 26

since ( a 2 + b 2 a 2 b 2 ) = 1 \text{since} {\color{#3D99F6}\left(\frac{a^2+b^2}{a^2 b^2} \right)} = \color{#3D99F6}1

Hence the maximum value is 26

Maxima occurs at a= 25/7 and b=25/24

Aditya Dhawan - 4 years, 6 months ago

Log in to reply

ok, thanks!! now got it.

Rakshit Joshi - 4 years, 6 months ago

Saya menggunakan a=b dan saya membulatkannya ke bilangan bulat terdekat dan saya mendapatkan hasilnya 16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...