Find the maximum side

Geometry Level 5

Let I I and O O be the incenter and circumcenter of A B C △ABC respectively.. ( A B C △ABC is not an equilateral triangle ) And A I O 9 0 AIO^\circ \leq 90^\circ and A B = 100 c m , C A = 102 c m AB=100cm,CA=102cm

Find the maximum possible value of side B C BC ...


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 13, 2014

Image Image

I am taking r=Inradius and R = C i r c u m r a d i u s R=Circumradius

A O = R AO=R because A O AO is the circumradius and D I = r DI=r because it is the inradius.

In the right triangle A D I ADI we have

s i n ( A / 2 ) = D I A I = r A I A I = r c o s e c ( A / 2 ) ( i ) sin(A/2)=\frac { DI }{ AI } =\frac { r }{ AI } \quad \Rightarrow AI=rcosec(A/2)\quad (i)

By euler's theorom distance between incentre and circumcentre is

O I 2 = R 2 2 R r ( i i ) { OI }^{ 2 }={ R }^{ 2 }-2Rr\quad \quad \quad (ii)

Given A I O 0 90 0 { AIO }^{ 0 }\le { 90 }^{ 0 } we have c o s ( A I O ) 0 cos(AIO)\ge 0

Applying cosine rule in triangle A I O AIO we get ( A I 2 + O I 2 A 0 2 ) 2. A O . O I = c o s ( A I O ) 0 \frac { { (A }I^{ 2 }+{ OI }^{ 2 }-{ A0 }^{ 2 }) }{ 2.AO.OI } =cos(AIO)\ge 0

Hence we have A I 2 + I O 2 A O 2 { A }I^{ 2 }+{ IO }^{ 2 }\ge { AO }^{ 2 }

Putting values we get r 2 c o s e c 2 ( A / 2 ) + ( R 2 2 R r ) R 2 r c o s e c 2 ( A / 2 ) 2 R r 2 R s i n 2 ( A / 2 ) { r }^{ 2 }{ cosec }^{ 2 }(A/2)+({ R }^{ 2 }-2Rr)\ge { R }^{ 2 }\\ \Rightarrow r{ cosec }^{ 2 }(A/2)\ge 2R\quad \quad \Rightarrow r\ge 2R{ sin }^{ 2 }(A/2)

Using r = ( s a ) t a n ( A / 2 ) a n d 2 R = a / s i n ( A ) r=(s-a)tan(A/2)\quad and\quad 2R=a/sin(A) we get

( s a ) t a n ( A / 2 ) s i n ( A ) a s i n 2 ( A / 2 ) 2 ( s a ) a ( a + b + c ) 2 a a b + c 2 a \Rightarrow (s-a)tan(A/2)sin(A)\ge a{ sin }^{ 2 }(A/2)\\ \Rightarrow 2(s-a)\ge a\quad \quad \Rightarrow (a+b+c)-2a\ge a\\ \Rightarrow \frac { b+c }{ 2 } \ge a

Putting the values b = 102 , c = 100 b=102,c=100 we get a 101 a\le 101

So a m a x = 101 \boxed { { a }_{ max } } =101

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...