Find the maximum value of ∠OMA

Geometry Level 3

Let O O be the origin of the Cartesian coordinate, given a circle C C : x 2 + y 2 = 8 x^2+y^2=8 , and a point A ( 2 , 0 ) A(2,0) . Let M M be an arbitrary point on circle C C . What is the maximum value of O M A ∠OMA (in degrees)?


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the O M A \triangle OMA . We note that O M = 2 2 OM=2 \sqrt 2 , the radius of circle C C , and O A = 2 OA = 2 , the x x -coordinate of A A . Let O M A = θ \angle OMA = \theta and M A O = α \angle MAO = \alpha . By sine rule , we have:

sin O M A O A = sin M A O O M sin θ 2 = sin α 2 2 sin θ = sin α 2 \begin{aligned} \frac {\sin \angle OMA}{OA} & = \frac {\sin \angle MAO}{OM} \\ \frac {\sin \theta}2 & = \frac {\sin \alpha}{2\sqrt 2} \\ \implies \sin \theta & = \frac {\sin \alpha}{\sqrt 2} \end{aligned}

For 0 θ 9 0 0^\circ \le \theta \le 90^\circ , the larger θ \theta , the larger sin θ \sin \theta and θ \theta is maximum when sin θ \sin \theta is maximum or when sin α = 1 \sin \alpha = 1 . Then max ( sin θ ) = 1 2 max ( θ ) = 45 \max (\sin \theta) = \frac 1{\sqrt 2} \implies \max (\theta) = \boxed{45}^\circ .

@Alice Smith , we use backslash "\" a lot in LaTex. For examples: \triangle \triangle , \angle \angle , \in \in , \frac \pi 2 π 2 \frac \pi 2 , \dfrac 3{23} 3 23 \dfrac 3{23} , \sin \alpha sin α \sin \alpha , \cos \beta cos β \cos \beta , \tan \gamma tan γ \tan \gamma , \ln x ln x \ln x , \int 0^\frac \pi 2, \sum {k=0}^\infty (there is an underscore after \int and \sum not shown on screen here), \frac 12 0 π 2 , k = 0 , 1 2 \int_0^\frac \pi 2, \sum_{k=0}^\infty, \frac 12 and put them after \displaystyle \int 0^\frac \pi 2, \sum {k=0}^\infty, \frac 12 0 π 2 , k = 0 , 1 2 \displaystyle \int_0^\frac \pi 2, \sum_{k=0}^\infty, \frac 12 . We need only one \displaystyle in front. If you are using \ [ \ ] \backslash [ \cdots \backslash] instead of \ ( \ ) \backslash( \cdots \backslash) , you don't need \displaystyle.

Chew-Seong Cheong - 1 year, 11 months ago
Zhengxi Gao
Jul 7, 2019

In the triangle OMA , we will get 2 s i n Θ \frac{2}{sinΘ} = 2 2 s i n α \frac{2\sqrt{2}}{sinα} ,because of the sine theorem.
Observing this equation, we will find that sinα gets maximum value when Θ get maximum value.
So when MA is perpendicular to x-axis,we get the maximum value of ∠OMA .
We can easily figure out that sinΘ = 2 2 \frac{\sqrt{2}}{2} .
hence, the maximum value of ∠OMA=45°



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...