As x , y , z range over all positive real numbers satisfying x y + y z + z x = x y z ( x + y + z ) , the maximum value of ( 2 x + y + z ) 2 1 + ( x + 2 y + z ) 2 1 + ( x + y + 2 z ) 2 1 can be expressed as b a , where a , b are coprime positive integers. Find a + b .
Details and assumptions
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you please explain your first step in detail please. And what is csi?
I think the sign <= should be >= so 3/16 is the minimal not maximal
Log in to reply
Nope. You might consider reading my solution more carefully.
Whoops I just realized that my solution is incorrect... I used Titu's lemma in the reverse direction. I'll fix this soon.
EDIT: Fixed.
I think it's kinda difficult for Level 2...
Log in to reply
It's from a shortlist???:O, definitely it is not for level 2
@Sreejato Bhattacharya can you please explain the inequality used in first step
Log in to reply
That is a simple application of AM-GM for two variables: 2 m + n ≥ m n for any two positive reals m , n . Here we set m = x + y , n = x + z .
Problem Loading...
Note Loading...
Set Loading...
Note that from A M − G M , ( 2 x + y + z ) 2 = ( ( x + y ) + ( z + x ) ) 2 ≥ ( 2 ( x + y ) ( z + x ) ) 2 = 4 ( x + y ) ( z + x ) . Analogously we get ( x + 2 y + z ) 2 ≥ 4 ( x + y ) ( y + z ) ( x + y + 2 z ) 2 ≥ 4 ( z + x ) ( x + y ) . Thus, ( 2 x + y + z ) 2 1 + ( x + 2 y + z ) 2 1 + ( x + y + 2 z ) 2 1 ≤ = 4 ( x + y ) ( y + z ) 1 + 4 ( y + z ) ( z + x ) 1 + 4 ( z + x ) ( x + y ) 1 2 ( x + y ) ( y + z ) ( z + x ) x + y + z . Now, note that by AM-GM, ( x y + y z + z x ) 2 = ≥ = x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x y 2 z + y z 2 x + x 2 y z ) ( x y 2 z + y z 2 x + x 2 y z ) 3 ( x y 2 z + x y z 2 + z x 2 y ) , so ( x y + y z + z x ) 2 ≥ 3 x y z ( x + y + z ) . It is well known that ( x + y ) ( y + z ) ( z + x ) ≥ 9 8 ( x + y + z ) ( x y + y z + z x ) . (For a proof, use AM-GM on ( x 2 y , y 2 z , z 2 x , x y 2 , y z 2 , x z 2 ) and then some tedious simplifications.)
Now, ( 2 x + y + z ) 2 1 + ( x + 2 y + z ) 2 1 + ( x + y + 2 z ) 2 1 ≤ = ≤ 2 ( x + y ) ( y + z ) ( z + x ) x + y + z 2 ( x + y ) ( y + z ) ( z + x ) ( x + y + z ) ( x y + y z + z x ) ⋅ x y z ( x + y + z ) x y + y z + z x ⋅ ( x y + y z + z x ) 2 x y z ( x + y + z ) 1 6 9 × 3 1 = 1 6 3 . Equality holds for ( x , y , z ) = ( 1 , 1 , 1 ) . Thus, a = b , 3 = 1 6 , and a + b = 1 9 .
This problem is adapted from ISL 2009 A2 .