Find The Maximum

Algebra Level 4

As x , y , z x,y,z range over all positive real numbers satisfying x y + y z + z x = x y z ( x + y + z ) , xy+yz+zx= xyz(x+y+z), the maximum value of 1 ( 2 x + y + z ) 2 + 1 ( x + 2 y + z ) 2 + 1 ( x + y + 2 z ) 2 \dfrac{1}{(2x+y+z)^2} + \dfrac{1}{(x+2y+z)^2} + \dfrac{1}{(x+y+2z)^2} can be expressed as a b , \dfrac{a}{b}, where a , b a,b are coprime positive integers. Find a + b . a+b.

Details and assumptions

  • This problem is not original.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that from A M G M , AM-GM, ( 2 x + y + z ) 2 = ( ( x + y ) + ( z + x ) ) 2 ( 2 ( x + y ) ( z + x ) ) 2 = 4 ( x + y ) ( z + x ) . (2x+y+z)^2= ((x+y) + (z+x))^2 \geq (2 \sqrt{(x+y)(z+x)} )^2 = 4 (x+y)(z+x). Analogously we get ( x + 2 y + z ) 2 4 ( x + y ) ( y + z ) ( x + y + 2 z ) 2 4 ( z + x ) ( x + y ) . (x+2y+z)^2 \geq 4(x+y)(y+z) \\ (x+y+2z)^2 \geq 4(z+x)(x+y). Thus, 1 ( 2 x + y + z ) 2 + 1 ( x + 2 y + z ) 2 + 1 ( x + y + 2 z ) 2 1 4 ( x + y ) ( y + z ) + 1 4 ( y + z ) ( z + x ) + 1 4 ( z + x ) ( x + y ) = x + y + z 2 ( x + y ) ( y + z ) ( z + x ) . \begin{array}{lcl} \dfrac{1}{(2x+y+z)^2} + \dfrac{1}{(x+2y+z)^2} + \dfrac{1}{(x+y+2z)^2} & \leq & \dfrac{1}{4 (x+y)(y+z)} + \dfrac{1}{4 (y+z)(z+x)} + \dfrac{1}{4 (z+x)(x+y)} \\ & = & \dfrac{x+y+z}{2(x+y)(y+z)(z+x)}. \end{array} Now, note that by AM-GM, ( x y + y z + z x ) 2 = x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x y 2 z + y z 2 x + x 2 y z ) ( x y 2 z + y z 2 x + x 2 y z ) = 3 ( x y 2 z + x y z 2 + z x 2 y ) , \begin{array}{lcl} (xy+yz+zx)^2 &= & x^2y^2 + y^2z^2 + z^2x^2 + 2 (xy^2z + yz^2x + x^2yz) \\ & \geq & (xy^2z + yz^2x + x^2yz) \\ & = & 3 (xy^2z + xyz^2 + zx^2y), \end{array} so ( x y + y z + z x ) 2 3 x y z ( x + y + z ) . (xy+yz+zx)^2 \geq 3xyz(x+y+z) . It is well known that ( x + y ) ( y + z ) ( z + x ) 8 9 ( x + y + z ) ( x y + y z + z x ) . (x+y)(y+z)(z+x) \geq \dfrac{8}{9}(x+y+z)(xy+yz+zx). (For a proof, use AM-GM on ( x 2 y , y 2 z , z 2 x , x y 2 , y z 2 , x z 2 ) (x^2y, y^2z, z^2x, xy^2, yz^2, xz^2) and then some tedious simplifications.)

Now, 1 ( 2 x + y + z ) 2 + 1 ( x + 2 y + z ) 2 + 1 ( x + y + 2 z ) 2 x + y + z 2 ( x + y ) ( y + z ) ( z + x ) = ( x + y + z ) ( x y + y z + z x ) 2 ( x + y ) ( y + z ) ( z + x ) x y + y z + z x x y z ( x + y + z ) x y z ( x + y + z ) ( x y + y z + z x ) 2 9 16 × 1 3 = 3 16 . \begin{array}{lcl} \dfrac{1}{(2x+y+z)^2} + \dfrac{1}{(x+2y+z)^2} + \dfrac{1}{(x+y+2z)^2} & \leq & \dfrac{x+y+z}{2(x+y)(y+z)(z+x)} \\ & = & \dfrac{(x+y+z)(xy+yz+zx)}{2(x+y)(y+z)(z+x)} \cdot \dfrac{xy+yz+zx}{xyz(x+y+z)} \cdot \dfrac{xyz(x+y+z)}{(xy+yz+zx)^2}\\ & \leq & \dfrac{9}{16} \times \dfrac{1}{3} = \dfrac{3}{16}. \end{array} Equality holds for ( x , y , z ) = ( 1 , 1 , 1 ) . (x,y,z)= (1,1,1). Thus, a = b , 3 = 16 , a=b, 3= 16, and a + b = 19 . a+b= \boxed{19}.


This problem is adapted from ISL 2009 A2 .

Can you please explain your first step in detail please. And what is csi?

Led Tasso - 7 years ago

I think the sign <= should be >= so 3/16 is the minimal not maximal

Reynan Henry - 7 years ago

Log in to reply

Nope. You might consider reading my solution more carefully.

Whoops I just realized that my solution is incorrect... I used Titu's lemma in the reverse direction. I'll fix this soon.

EDIT: Fixed.

I think it's kinda difficult for Level 2...

Jordi Bosch - 6 years, 9 months ago

Log in to reply

It's from a shortlist???:O, definitely it is not for level 2

Jordi Bosch - 6 years, 9 months ago

@Sreejato Bhattacharya can you please explain the inequality used in first step

Anish Kelkar - 7 years ago

Log in to reply

That is a simple application of AM-GM for two variables: m + n 2 m n \dfrac{m+n}{2} \geq \sqrt{mn} for any two positive reals m , n . m,n. Here we set m = x + y , n = x + z . m= x+y, n= x+z.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...