find the max+min

Geometry Level 2

3 cos x 4 sin 2 x cos x 2 sin x + 4 sin 2 x cos x 4 sin 2 x sin x 3\cos x -4\sin^2 x \cos x -2 \sin x +4 \sin 2x \cos x - 4 \sin 2x \sin x

Find the sum of the maximum and minimum values of the expression above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 26, 2020

Let f ( x ) f(x) be the given expression.

f ( x ) = 3 cos x 4 sin 2 x cos x 2 sin x + 4 sin 2 x cos x 4 sin 2 x sin x = 3 cos x 4 sin 2 x cos x 2 sin x + 8 sin x cos 2 x 8 sin 2 x cos x = 3 cos x 12 sin 2 x cos x 2 sin x + 8 sin x cos 2 x = 3 cos x 12 ( 1 cos 2 x ) cos x 2 sin x + 8 ( 1 sin 2 x ) sin x = 9 cos x + 12 cos 3 x + 6 sin x 8 sin 3 x = 3 cos 3 x + 2 sin 3 x = 13 sin ( 3 x + tan 1 3 2 ) \begin{aligned} f(x) & = 3\cos x -4\sin^2 x \cos x -2 \sin x +4 \sin 2x \cos x - 4 \sin 2x \sin x \\ & = 3\cos x -4\sin^2 x \cos x -2 \sin x + 8 \sin x \cos^2 x - 8 \sin^2 x \cos x \\ & = 3\cos x - 12\sin^2 x \cos x -2 \sin x + 8 \sin x \cos^2 x \\ & = 3\cos x - 12(1-\cos^2 x)\cos x -2 \sin x + 8(1-\sin^2 x)\sin x \\ & = -9\cos x + 12\cos^3 x + 6 \sin x - 8\sin^3 x \\ & = 3 \cos 3x + 2 \sin 3x \\ & = \sqrt{13} \sin \left(3x + \tan^{-1} \frac 32\right) \end{aligned}

max ( f ( x ) ) = 13 when 3 x + tan 1 3 2 = 2 n π + π 2 min ( f ( x ) ) = 13 when 3 x + tan 1 3 2 = 2 n π π 2 max ( f ( x ) + min ( f ( x ) ) = 13 13 = 0 where n is an integer. \begin{aligned} \implies \max (f(x)) & = \sqrt{13} & \small \blue{\text{when }3x + \tan^{-1} \frac 32 = 2n\pi + \frac \pi 2} \\ \min (f(x)) & = - \sqrt{13} & \small \blue{\text{when }3x + \tan^{-1} \frac 32 = 2n\pi - \frac \pi 2} \\ \implies \max(f(x) + \min(f(x)) & = \sqrt{13} - \sqrt{13} = \boxed 0 & \small \blue{\text{where }n \text{ is an integer.}} \end{aligned}

The given expression simplifies to 3 cos 3 x 2 sin 3 x = 13 cos ( 3 x + tan 1 ( 2 3 ) 3\cos 3x-2\sin 3x=\sqrt {13}\cos (3x+\tan^{-1}(\frac{2}{3}) .

So the minimum of the expression is 13 -\sqrt {13} , the maximum is 13 \sqrt {13} , and their sum is 0 \boxed 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...