3 cos x − 4 sin 2 x cos x − 2 sin x + 4 sin 2 x cos x − 4 sin 2 x sin x
Find the sum of the maximum and minimum values of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given expression simplifies to 3 cos 3 x − 2 sin 3 x = 1 3 cos ( 3 x + tan − 1 ( 3 2 ) .
So the minimum of the expression is − 1 3 , the maximum is 1 3 , and their sum is 0 .
Problem Loading...
Note Loading...
Set Loading...
Let f ( x ) be the given expression.
f ( x ) = 3 cos x − 4 sin 2 x cos x − 2 sin x + 4 sin 2 x cos x − 4 sin 2 x sin x = 3 cos x − 4 sin 2 x cos x − 2 sin x + 8 sin x cos 2 x − 8 sin 2 x cos x = 3 cos x − 1 2 sin 2 x cos x − 2 sin x + 8 sin x cos 2 x = 3 cos x − 1 2 ( 1 − cos 2 x ) cos x − 2 sin x + 8 ( 1 − sin 2 x ) sin x = − 9 cos x + 1 2 cos 3 x + 6 sin x − 8 sin 3 x = 3 cos 3 x + 2 sin 3 x = 1 3 sin ( 3 x + tan − 1 2 3 )
⟹ max ( f ( x ) ) min ( f ( x ) ) ⟹ max ( f ( x ) + min ( f ( x ) ) = 1 3 = − 1 3 = 1 3 − 1 3 = 0 when 3 x + tan − 1 2 3 = 2 n π + 2 π when 3 x + tan − 1 2 3 = 2 n π − 2 π where n is an integer.